首页|基于人工标识增强的多传感器融合定位方法

基于人工标识增强的多传感器融合定位方法

扫码查看
近年来,随着机器人技术的快速发展,移动机器人的定位算法也在不断地更新优化.针对现有移动机器人定位算法在室内退化场景中稳定性和精度较差的问题,提出了一种基于人工标识增强的四目全景相机、单线激光雷达和惯性测量单元的多传感器融合定位方法.该方法通过GTSAM因子图优化器联合优化惯性测量单元(IMU)预积分因子、雷达里程计因子和AprilTag投影因子获得光滑的移动机器人运动状态估计.实验结果表明,所提方法相较于经典的Cartographer算法和AprilTag_ros算法在定位精度和稳定性上均有明显提升.基于人工标识增强的多传感器融合方法既消除了累计误差,又解决了位姿漂移问题,具有更鲁棒的表现,可有效解决移动机器人在隧道、长直走廊等退化场景下的定位丢失问题.
Multi-sensor Fusion Localization Method Enhanced by Artificial Marker
In recent years,with the rapid advancement of robotics technology,the localization algorithms for mobile robots have been continuously evolving and improving.Addressing the issues of stability and accuracy in existing mobile ro-bot localization algorithms within indoor degraded environments,a multi-sensor fusion localization method enhanced with ar-tificial markers,utilizing a quad-lens panoramic camera,single-line LiDAR,and inertial measurement unit(IMU)is pro-posed in this paper.This method employs the GTSAM factor graph optimizer to co-optimize the IMU preintegration factors,LiDAR odometry factors,and AprilTag projection factors,achieving smooth motion state estimation of the mobile robot.Ex-periment results show that the proposed method significantly improves both the positioning accuracy and stability compared to traditional methods such as the Cartographer and AprilTag_ros.The multi-sensor fusion approach,enhanced by artificial markers,not only eliminates cumulative errors but also resolves pose drift issues.It effectively resolves the problem of lo-calization loss when mobile robots navigate tunnels,long straight corridors and other similar degraded settings.

degraded environmentsGTSAMAprilTagstate estimation

程凯、孙波、刘儒瑜、陈佳

展开 >

福建农林大学机电工程学院,福州 350100

中国科学院海西研究院泉州装备制造研究中心,泉州 362200

杭州师范大学信息科学与技术学院,杭州 311121

退化场景 GTSAM AprilTag 状态估计

2024

导航与控制
北京航天控制仪器研究所

导航与控制

CSTPCD
影响因子:0.133
ISSN:1674-5558
年,卷(期):2024.23(5)