首页|GNSS拒止下GRU神经网络INS/GNSS融合导航研究

GNSS拒止下GRU神经网络INS/GNSS融合导航研究

扫码查看
INS/GNSS松组合融合导航面临的主要挑战是在GNSS中断期间实现可靠和低成本的定位.在隧道、城市高楼和恶劣气候等环境下会出现长时间GNSS信号丢失的情况,此时INS/GNSS融合导航便会退化为单一的惯性导航.针对该问题,提出了一种GNSS拒止下基于GRU神经网络的INS/GNSS融合导航算法.该算法通过在有GNSS信号时将惯性导航各项参数作为GRU神经网络的输入,同时将GNSS提供的三维位置信息作为GRU神经网络的输出并对GRU神经网络进行训练,然后在GNSS信号消失时以惯性导航各项参数作为训练完成的GRU模型的输入,从而得到GNSS三维位置信息,使在GNSS信号拒止下仍能实现INS/GNSS融合导航.仿真结果最大定位误差为5.646 m,表明该算法能有效保证GNSS信号拒止下INS/GNSS融合导航的精度和鲁棒性.
Research on GRU Neural Network INS/GNSS Fusion Navigation with GNSS Denied
The primary challenge faced by the INS/GNSS is to achieve reliable and cost-effective positioning during GNSS outages.Under certain conditions,such as tunnels,tall buildings in urban areas,and adverse weather conditions,prolonged GNSS signal loss may occur,rendering the INS/GNSS fusion navigation system to degrade to a standalone inertial navigation system.To address this issue,a novel INS/GNSS fusion navigation algorithm based on GRU neural networks in the presence of GNSS denial is proposed.This algorithm operates by utilizing the inertial navigation parameters as inputs to the GRU neural network when GNSS signals are available,while simultaneously utilizing the three-dimensional position in-formation provided by GNSS as the output of the GRU neural network and training it.Subsequently,when GNSS signals disappear,the inertial navigation parameters are used as inputs to the trained GRU model to obtain the three-dimensional position information of GNSS,enabling INS/GNSS fusion navigation even in the presence of GNSS signal denial.The simu-lation results,with a maximum positioning error of 5.646 m,demonstrate that this algorithm effectively ensures the accura-cy and robustness of INS/GNSS fusion navigation under GNSS signal denial.

GNSS deniedglobal navigation satellite system(GNSS)inertial navigation system(INS)fusion navi-gationgated recurrent unit(GRU)regression problem

王家鑫、周艳玲、庞茹

展开 >

湖北大学人工智能学院,武汉 430062

GNSS拒止 全球导航卫星系统 惯性导航系统 融合导航 门控循环单元 回归问题

2024

导航与控制
北京航天控制仪器研究所

导航与控制

CSTPCD
影响因子:0.133
ISSN:1674-5558
年,卷(期):2024.23(5)