首页|基于卷积神经网络和格拉姆角差场的四象限脉冲整流器故障诊断方法

基于卷积神经网络和格拉姆角差场的四象限脉冲整流器故障诊断方法

扫码查看
为充分发挥卷积神经网络(CNN)在图像识别分类中的优势,提出一种基于卷积神经网络和格拉姆角差场(GADF)的四象限脉冲整流器故障诊断方法.首先利用格拉姆角差场将整流器网侧电流一维时间序列转换为二维特征图,保留数据对时间的依赖性,识别出信号在不同时间间隔内的时间相关性;然后利用卷积神经网络对生成的特征图进行整流器开路故障特征提取与分类,并与其他常见故障诊断方法比较.仿真分析结果表明,相较于其他故障诊断方法,所提方法具有更高的诊断准确率.
Fault diagnosis method for four-quadrant pulse rectifiers based on convolutional neural network and Gramian angular difference field
To fully exert the advantages of the convolutional neural network(CNN)in image recognition and classification,a fault diagnosis method for four-quadrant pulse rectifiers based on CNN and Gramian angular difference field(GADF)is proposed.GADF is utilized to transform the one-dimensional time series of rectifier current into a two-dimensional feature map,preserving the temporal dependency of the data and identifying the temporal correlations of the signal over different time intervals.The CNN then extracts and classifies the features of open circuit faults in the rectifier from the generated feature maps.This method is compared with other common fault diagnosis methods.Simulation analysis results indicate that this proposed method achieves higher diagnostic accuracy compared to other fault diagnosis methods.

four-quadrant pulse rectifiersGramian angular difference field(GADF)convolutional neural networks(CNN)fault diagnosis

翟道宇、孙燕楠

展开 >

大连交通大学詹天佑学院,辽宁 大连 116028

四象限脉冲整流器 格拉姆角差场(GADF) 卷积神经网络(CNN) 故障诊断

2025

电气技术
中国电工技术学会

电气技术

影响因子:0.265
ISSN:1673-3800
年,卷(期):2025.26(1)