首页|基于VMD和小波分析的油液磨粒信号去噪方法

基于VMD和小波分析的油液磨粒信号去噪方法

扫码查看
油液金属磨粒检测传感器通过监测机械设备油路中的金属磨粒,可实时反馈机械设备故障特征.为了提升油液磨粒检测传感器的检测精度,文章提出一种针对油液磨粒信号的变分模态分解(Variational Mode Decomposition,VMD)结合小波分析的去噪方法.首先,通过计算各模态分量与原始油液磨粒信号的相关系数确定最优K值;其次,对原始信号进行VMD分解,筛选出特征分量;最后,利用小波阈值去噪方法对特征分量进行降噪处理.实验结果表明,与经验模态分解(Empirical Mode Decomposition,EMD)和传统小波去噪方法相比,本方法的信噪比最高,均方根误差最小,能量占比最大,在油液磨粒信号降噪效果中表现最好,有利于提升磨粒检测传感器的检测精度.
Oil Abrasive Signal Denoising Method Based On VMD and Wavelet Analysis
The oil metal abrasive particle detection sensor can feedback the fault characteristics of mechanical equipment in real time by monitoring the metal abrasive particles in the oil circuit of mechanical equipment.In order to improve the detection accuracy of oil wear particle detection sensor,a denoising method based on Variational Mode Decomposition(VMD)and wavelet analysis is proposed.Firstly,the optimal K value is determined by calculating the correlation coefficient between each modal component and the original oil wear particle signal.Secondly,the original signal is decomposed by VMD,and the characteristic components are screened out.Finally,the wavelet threshold denoising method is used to denoise the feature components.The experimental results show that,compared with Empirical Mode Decomposition(EMD)and traditional wavelet denoising methods,this method has the highest signal-to-noise ratio,the smallest root mean square error,and the largest energy proportion,and it is the best in the denoising effect of oil wear particle signals,which is conducive to improving the detection accuracy of wear particle detection sensors.

metal abrasive detectionVariational Mode Decomposition(VMD)wavelet analysisdenoising

边瑞卿、康良伟、董浩森、张永杰、李凯

展开 >

中北大学 信息与通信工程学院,山西 太原 030051

金属磨粒检测 变分模态分解(VMD) 小波分析 去噪

中央引导地方科技发展专项山西省重点研发计划山西省科技成果转化引导专项山西省基础研究计划

YDZJSX20231A02520220201010100720220402130104420210302123058

2024

电声技术
电视电声研究所(中国电子科技集团公司第三研究所)

电声技术

影响因子:0.259
ISSN:1002-8684
年,卷(期):2024.48(1)
  • 14