首页|基于卷积神经网络的实时语音分割优化研究

基于卷积神经网络的实时语音分割优化研究

扫码查看
为进一步提高实时语音分割的性能,分析基于卷积神经网络(Convolutional Neural Networks,CNN)的实时语音分割优化方法.首先,介绍CNN的基本结构和在语音分割中的数学原理.其次,引入修剪技术,根据权重的重要性分数决定保留或删除权重.实验结果表明,该方法的准确率、召回率、F1值及用时均优于传统CNN.
Research on Real time Speech Segmentation Optimization Based on Convolutional Neural Networks
To further improve the performance of real-time speech segmentation, analyze the optimization method of real-time speech segmentation based on Convolutional Neural Network (CNN). Firstly, introduce the basic structure of CNN and its mathematical principles in speech segmentation. Secondly, introduce pruning techniques to determine whether to retain or delete weights based on their importance scores. The experimental results show that the accuracy, recall, F1 value, and time consumption of this method are all better than traditional CNN.

Convolutional Neural Network (CNN)speech segmentationreal time performancepruning technique

杨波

展开 >

陇南师范高等专科学校数信学院,甘肃 陇南 742500

卷积神经网络(CNN) 语音分割 实时性 修剪技术

2024

电声技术
电视电声研究所(中国电子科技集团公司第三研究所)

电声技术

影响因子:0.259
ISSN:1002-8684
年,卷(期):2024.48(5)