首页|基于小波神经网络的嵌入式语音识别系统设计

基于小波神经网络的嵌入式语音识别系统设计

扫码查看
针对嵌入式语音识别中的资源受限问题,提出一种基于小波神经网络的轻量化识别方案.该方案利用小波变换提取语音信号的时频域特征,并结合小波神经网络的非线性拟合能力,构建了高效的语音识别模型.实证研究表明,该方案在TIMIT数据集上取得了80.17%的帧识别准确率,在满足实时性约束的同时,显著提升了嵌入式语音识别系统的性能表现,为智能语音交互在资源受限场景下的应用部署提供了新的思路.
Design of an Embedded Speech Recognition System Based on Wavelet Neural Network
Aiming at the problem of resource limitation in embedded speech recognition,a lightweight recognition scheme based on wavelet neural network is proposed.This scheme uses wavelet transform to extract the time-frequency domain features of speech signals,and combines the nonlinear fitting ability of wavelet neural network to build an efficient speech recognition model.The empirical study shows that the scheme achieves 80.17%frame recognition accuracy on TIMIT data set,which not only meets the real-time constraints,but also significantly improves the performance of embedded speech recognition system,providing a new idea for the application deployment of intelligent voice interaction in resource-constrained scenarios.

embedded speech recognitionwavelet transformwavelet neural network

陈龙飞

展开 >

上海师范大学,上海 201418

嵌入式语音识别 小波变换 小波神经网络

2024

电声技术
电视电声研究所(中国电子科技集团公司第三研究所)

电声技术

影响因子:0.259
ISSN:1002-8684
年,卷(期):2024.48(7)