首页|基于特征压缩的实时语音增强模型研究

基于特征压缩的实时语音增强模型研究

扫码查看
提出一种新型的基于特征压缩的实时语音增强算法,该算法将信号处理方法和神经网络方法进行结合,一方面降低了模型的复杂性,另一方面有效抑制了噪声.算法采用传统的语音信号处理方法对特征进行处理和压缩,以提取出语音中更多的隐式特征,然后利用神经网络对所提取的特征进行学习,最后获得相应的纯净语音信号预测.所提算法可以实现实时处理(一帧进一帧出),并且在低于基线模型复杂度的情况下,语音质量客观评估指标和平均意见得分方面都接近甚至超越基线算法,表现出良好的降噪性能.在模型参数规模方面,所提算法的模型参数远小于基线算法.
Research on Real-Time Speech Enhancement Models Based on Feature Compression
AA novel real-time speech enhancement algorithm based on feature compression is proposed,which combines signal processing methods and neural network methods. On the one hand,it reduces the complexity of the model,and on the other hand,it effectively suppresses noise. The algorithm uses traditional speech signal processing methods to process and compress features,in order to extract more implicit features from speech. Then,a neural network is used to learn the extracted features,and finally,the corresponding pure speech signal prediction is obtained. The proposed algorithm can achieve real-time processing (one frame in,one frame out),and the objective evaluation indicators and mean opinion score of speech quality are close to or even exceed the baseline algorithm when the complexity of the baseline model is lower,demonstrating good noise reduction performance. In terms of model parameter scale,the model parameters of the proposed algorithm are much smaller than those of the baseline algorithm.

noise suppressionneural networkssignal processingreal time processingfeature compression

容韦聪、童艳荔

展开 >

广东茂名农林科技职业学院智能工程系,广东 茂名 525000

肇庆市科技中心,广东 肇庆 526000

噪声抑制 神经网络 信号处理 实时处理 特征压缩

茂名市科技计划立项项目

2024363

2024

电声技术
电视电声研究所(中国电子科技集团公司第三研究所)

电声技术

影响因子:0.259
ISSN:1002-8684
年,卷(期):2024.48(9)