首页|基于统计模型的人声识别优化研究

基于统计模型的人声识别优化研究

扫码查看
为研究基于变分推断的高斯混合模型(Gaussian Mixture Model,GMM)在人声识别中的优化方法,首先设计人声识别系统框架,其次阐述传统GMM在人声识别系统中的基本原理和特点,再次详细介绍变分推断的基本原理及其在GMM优化中的应用,最后采用公开数据集进行实验评估.仿真结果表明,优化后的GMM在识别准确率、精确率、召回率以及F1分数等指标上均显著优于传统GMM.
Research on Optimization of Voice Recognition Based on Statistical Models
In order to study the optimization method of Gaussian Mixture Model (GMM) based on variational inference in human voice recognition,the framework of human voice recognition system is first designed,and the basic principle and characteristics of traditional GMM in human voice recognition systems are described. Then,the basic principle of variational inference and its application in GMM optimization are introduced in detail. Finally,experimental evaluation is carried out with open data set.The simulation results show that the optimized GMM is significantly better than the traditional GMM in recognition accuracy,precision,recall,and F1 score.

Gaussian Mixture Model (GMM)voice recognitionvariational inferencestatistical model

晁松杰、娄艺

展开 >

漯河职业技术学院,河南 漯河 462600

高斯混合模型(GMM) 人声识别 变分推断 统计模型

2024

电声技术
电视电声研究所(中国电子科技集团公司第三研究所)

电声技术

影响因子:0.259
ISSN:1002-8684
年,卷(期):2024.48(9)
  • 7