首页|基于神经网络的环境声音分类方法研究

基于神经网络的环境声音分类方法研究

扫码查看
研究一种基于卷积神经网络(Convolutional Neural Network,CNN)和门控循环单元(Gated Recurrent Unit,GRU)相结合的环境声音分类方法.首先,分析CNN-GRU模型的基本结构;其次,探讨模型进行环境声音分类的数学原理;最后,采用ESC-50 数据集在MATLAB平台上对所提方法进行测试.实验结果表明,CNN-GRU模型的准确率、精确率、召回率及F1 值分别达到了 0.92、0.91、0.89 及 0.90,验证了该模型在处理环境声音分类任务中的有效性和健壮性.
Research on Environmental Sound Classification Method Based on Neural Network
A methodology of environmental sound systematization based on the Convolutional Neural Network(CNN)and Gated Recurrent Unit(GRU)is studied.Firstly,the basic structure of the CNN-GRU model is analyzed;secondly,the mathematical principle of the model for environmental sound classification is discussed;finally,the proposed method is tested on the MATLAB platform using the ESC-50 dataset.The experimental results show that the accuracy rate,precision rate,recall rate and F1 value of CNN-GRU model reach 0.92,0.91,0.89 and 0.90,respectively,which verifies the effectiveness and robustness of the model in processing environmental sound classification tasks.

Convolutional Neural Network(CNN)Gated Recurrent Unit(GRU)sound classification

徐圣林

展开 >

中国药科大学,江苏 南京 211198

卷积神经网络(CNN) 门控循环单元(GRU) 声音分类

2024

电声技术
电视电声研究所(中国电子科技集团公司第三研究所)

电声技术

影响因子:0.259
ISSN:1002-8684
年,卷(期):2024.48(10)