首页|基于深度学习的语音识别系统实现方法

基于深度学习的语音识别系统实现方法

扫码查看
研究基于深度学习的语音识别系统实现方法,首先探讨语音识别系统的总体框架,其次深入研究梅尔倒谱系数(Mel-Frequency Cepstral Coefficient,MFCC)的提取和深度卷积神经网络(Deep Convolutional Neural Network,DCNN)的基本原理,最后基于Python和PyTorch框架进行系统测试.实验结果表明,所提方法在准确率、精确率及召回率方面均表现优异,能够较好地捕捉大多数样本.
Implementation Method of Speech Recognition System Based on Deep Learning
This article studies the implementation method of speech recognition system based on deep learning.Firstly,explore the overall framework of the speech recognition system.Secondly,delve into the extraction of Mel-Frequency Cepstral Coefficient(MFCC)and the basic principles of Deep Convolutional Neural Network(DCNN).Finally,conduct system testing based on Python and PyTorch frameworks.The experimental results show that the proposed method performs well in accuracy,precision,and recall,and can capture most samples well.

Deep Convolutional Neural Network(DCNN)speech recognitionPython

窦亚珍

展开 >

河南农业职业学院,河南 郑州 451450

深度卷积神经网络(DCNN) 语音识别 Python

2024

电声技术
电视电声研究所(中国电子科技集团公司第三研究所)

电声技术

影响因子:0.259
ISSN:1002-8684
年,卷(期):2024.48(10)