首页|基于神经网络的高保真音频重建方法研究

基于神经网络的高保真音频重建方法研究

扫码查看
为提升受损音频信号的质量,提出一种基于神经网络的高保真音频重建方法.该方法利用卷积神经网络(Convolutional Neural Network,CNN)提取特征,利用自适应滤波器抑制噪声,利用生成对抗网络进行音频重建.实验结果表明,在不同噪声环境下,该方法能显著提高音频质量,尤其在低信噪比(Signal-to-Noise Ratio,SNR)条件下表现优异.
Research on High Fidelity Audio Reconstruction Method Based on Neural Network
To improve the quality of damaged audio signals,a high fidelity audio reconstruction method based on neural networks is proposed.This method utilizes Convolutional Neural Network(CNN)to extract features,adaptive filters to suppress noise,and Generative Adversarial Network for audio reconstruction.The experimental results show that this method can significantly improve audio quality in different noise environments,especially under low Signal-to-Noise Ratio(SNR)conditions.

high fidelity audioreconstructionConvolutional Neural Network(CNN)

罗明挽

展开 >

阳江职业技术学院,广东 阳江 529500

高保真音频 重建 卷积神经网络(CNN)

2024

电声技术
电视电声研究所(中国电子科技集团公司第三研究所)

电声技术

影响因子:0.259
ISSN:1002-8684
年,卷(期):2024.48(10)