首页|机器学习算法在音频信号降噪中的应用研究

机器学习算法在音频信号降噪中的应用研究

扫码查看
研究一种基于机器学习算法的音频信号降噪方法(Machine Learning based Audio Denoising Method,MLAADM).该方法综合利用深度神经网络(Deep Neural Network,DNN)、循环神经网络、强化学习技术,实现音频信号降噪.实验结果表明,MLAADM在信噪比、谱失真比、感知评价语音质量及短时客观可懂度等指标上全面优于传统方法和其他深度学习方法,对非平稳噪声处理效果尤为突出,展现了其在复杂噪声环境下的应用潜力.
Research on the Application of Machine Learning Algorithm in Audio Signal Denoising
A Machine Learning based Audio Denoising Method(MLAADM)is studied.The method utilizes Deep Neural Network(DNN),recurrent neural network and reinforcement learning to realize noise reduction of audio signal.The experimental results show that MLAADM is superior to traditional methods and other deep learning methods in signal-to-noise ratio,spectral distortion ratio,perception evaluation of speech quality and short-term objective intelligibility,especially for non-stationary noise processing,demonstrating its application potential in complex noise environments.

audio denoisingmachine learningDeep Neural Networks(DNN)

张赵管

展开 >

运城职业技术大学,山西 运城 044000

音频降噪 机器学习 深度神经网络(DNN)

2024

电声技术
电视电声研究所(中国电子科技集团公司第三研究所)

电声技术

影响因子:0.259
ISSN:1002-8684
年,卷(期):2024.48(11)