首页|基于深度学习的广播音频输入信号噪声处理方法

基于深度学习的广播音频输入信号噪声处理方法

扫码查看
提出一种基于深度学习的广播音频噪声处理方法,旨在提高广播音频质量.通过采用卷积神经网络进行噪声分类与定位,并结合深度神经网络(Deep Neural Network,DNN)与最小均方误差(Minimum Mean Squared Error,MMSE)滤波器实现自适应噪声抑制.实验结果表明,所提方法在信号失真比和感知评价语音质量指标上显著优于传统方法,展现出卓越的降噪效果.
Noise Processing Method of Broadcast Audio Input Signal Based on Deep Learning
This paper proposes a method for processing broadcast audio noise based on deep learning,aiming at improving broadcast audio quality.The convolutional neural network is used for noise classification and location,and the adaptive noise suppression is realized by combining the Deep Neural Network(DNN)and the Minimum Mean Squared Error(MMSE)filter.The experimental results show that the proposed method is significantly superior to the traditional methods in signal distortion ratio and perceptual evaluation of speech quality,showing excellent noise reduction effect.

deep learningbroadcast audionoise processingadaptive noise suppression

李波

展开 >

重庆广播电视技术中心529台,重庆 409000

深度学习 广播音频 噪声处理 自适应噪声抑制

2024

电声技术
电视电声研究所(中国电子科技集团公司第三研究所)

电声技术

影响因子:0.259
ISSN:1002-8684
年,卷(期):2024.48(11)