首页|基于U-Net结构的噪声源定位分类方法研究

基于U-Net结构的噪声源定位分类方法研究

扫码查看
针对噪声污染控制中的噪声源精确定位与分类问题,提出一种基于U-Net结构的方法.该方法通过结合卷积神经网络的编码器-解码器架构与跳跃连接,能够在复杂声场中有效提取多尺度声学特征,实现高精度的噪声源定位和分类.实验结果表明,该方法在不同信噪比(Signal Noise Ratio,SNR)环境下都表现优异,为噪声污染治理提供了有力的技术支撑.
Research on Noise Source Localization and Classification Method Based on U-Net Structure
Aiming at the problem of accurate location and classification of noise sources in noise pollution control,a method based on U-Net structure is proposed.This method can effectively extract multi-scale acoustic features in complex sound field by combining the encoder-decoder architecture of convolutional neural network with jump connection,and realize high-precision noise source location and classification.The experimental results show that this method performs well in different Signal Noise Ratio(SNR)environments,which provides strong technical support for noise pollution control.

noise source localizationU-Netdeep learningspectrogram

黄力

展开 >

福州职业技术学院,福建 福州 350108

噪声源定位 U-Net 深度学习 声谱图

2024

电声技术
电视电声研究所(中国电子科技集团公司第三研究所)

电声技术

影响因子:0.259
ISSN:1002-8684
年,卷(期):2024.48(12)