首页|基于声音增强技术的高空作业车电气故障监测方法设计

基于声音增强技术的高空作业车电气故障监测方法设计

扫码查看
提出一种基于声音增强技术的高空作业车电气故障监测方法.通过小波包分解降噪和梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)特征提取,结合支持矢量机(Support Vector Machine,SVM)分类器,实现了对高空作业车电气系统故障的高效识别.实验结果表明,该方法在复杂噪声环境下仍能保持较高的故障识别准确率和实时性,为高空作业车的安全运行提供了可靠保障.
Design of Electrical Fault Monitoring Method for Aerial Work Vehicle Based on Sound Enhancement Technology
An electrical fault monitoring method of aerial work vehicle based on sound enhancement technology is proposed.Through wavelet packet decomposition and Mel Frequency Cepstrum Coefficient(MFCC)feature extraction,combined with Support Vector Machine(SVM)classifier,the high-efficiency fault identification of aerial work vehicle electrical system is realized.The experimental results show that this method can still maintain high fault identification accuracy and real-time performance in complex noise environment,which provides a reliable guarantee for the safe operation of aerial work vehicles.

sound enhancement technologyaerial work vehicleswavelet packet decomposition

王壘

展开 >

江苏柳工机械有限公司,江苏 镇江 212000

声音增强技术 高空作业车 小波包分解

2024

电声技术
电视电声研究所(中国电子科技集团公司第三研究所)

电声技术

影响因子:0.259
ISSN:1002-8684
年,卷(期):2024.48(12)