首页|基于独立成分分析的远场语音降噪方法研究

基于独立成分分析的远场语音降噪方法研究

扫码查看
研究基于独立成分分析(Independent Component Analysis,ICA)的远场语音降噪方法,并深入探讨其优化策略.首先,分析远场语音识别中噪声问题的复杂性,并探讨ICA的基本原理与应用.其次,为克服传统ICA在处理非平稳信号时的局限性,引入梯度下降法进行优化.最后,通过WSJ0-mix数据集进行测试.实验结果表明,优化后的ICA方法在信噪比上显著优于传统方法,可有效提高降噪效果.
Research on Far-Field Speech Noise Reduction Method Based on Principal Component Analysis
The far-field speech noise reduction method based on Independent Component Analysis(ICA)is studied,and conducts an in-depth discussion on its optimization strategy.Firstly,the complexity of the noise problem in far-field speech recognition is analyzed,and the basic principles and applications of ICA are discussed.Secondly,in order to overcome the limitations of traditional ICA in processing non-stationary signals,gradient descent method is introduced for optimization.Finally,the WSJ0-mix dataset is tested.The experimental results show that the optimized ICA method is significantly better than the traditional method in terms of signal-to-noise ratio,effectively improving the noise reduction effect.

speech denoisingIndependent Component Analysis(ICA)gradient descent methodnon-stationary

许韬

展开 >

福建林业职业技术学院 智能制造系,福建 南平 353000

语音降噪 独立成分分析(ICA) 梯度下降法 非稳态

2024

电声技术
电视电声研究所(中国电子科技集团公司第三研究所)

电声技术

影响因子:0.259
ISSN:1002-8684
年,卷(期):2024.48(12)