首页|基于深度学习的广播电视音频降噪技术

基于深度学习的广播电视音频降噪技术

扫码查看
随着广播电视技术的快速发展,音频质量对节目制作和传播的重要性日益凸显.然而,各种噪声干扰严重影响音频信号清晰度.深度学习技术为音频降噪提供了新的解决方案.通过构建深度神经网络模型,利用大规模数据训练,可以有效识别和去除复杂噪声,显著提升音频质量.实验结果表明,相较于传统算法,基于深度学习的降噪方法具有更优的性能,在保持音频本体信息的同时,能够有效抑制多种类型的噪声干扰,为广播电视音频处理提供了技术支撑.
Audio Denoising Technology for Radio and Television Based on Deep Learning
With the rapid development of radio and television technology,the importance of audio quality to program production and dissemination has become increasingly prominent.However,all kinds of noise interference seriously affect the clarity of audio signals.Deep learning technology provides a new solution for audio noise reduction.By constructing a deep neural network model and using large-scale data training,complex noise can be effectively identified and removed,and audio quality can be significantly improved.The experimental results show that,compared with the traditional algorithm,the denoising method based on deep learning has better performance,and can effectively suppress various types of noise interference while maintaining the audio ontology information,which provides technical support for radio and television audio processing.

deep learningradio and televisionaudio denoisingneural networkssignal processing

李志远

展开 >

寿光市融媒体中心,山东 寿光 262700

深度学习 广播电视 音频降噪 神经网络 信号处理

2024

电声技术
电视电声研究所(中国电子科技集团公司第三研究所)

电声技术

影响因子:0.259
ISSN:1002-8684
年,卷(期):2024.48(12)