首页|针对图像分类的鲁棒物理域对抗伪装

针对图像分类的鲁棒物理域对抗伪装

扫码查看
深度学习模型对对抗样本表现出脆弱性.作为一种对现实世界深度系统更具威胁性的攻击形式,物理域对抗样本近年来受到了广泛的研究关注.现有方法大多利用局部对抗贴片噪声在物理域实现对图像分类模型的攻击,然而二维贴片在三维空间的攻击效果将由于视角变化而不可避免地下降.为了解决这一问题,所提Adv-Camou方法利用空间组合变换来实时生成任意视角及变换背景的训练样本,并最小化预测类与目标类交叉熵损失,使模型输出指定错误类别.此外,所建立的仿真三维场景能公平且可重复地评估不同的攻击.实验结果表明,Adv-Camou生成的一体式对抗伪装可在全视角欺骗智能图像分类器,在三维仿真场景比多贴片拼接纹理平均有目标攻击成功率高出25%以上,对Clarifai商用分类系统黑盒有目标攻击成功率达42%,此外3D打印模型实验在现实世界平均攻击成功率约为66%,展现出先进的攻击性能.
Robust Physical Adversarial Camouflages for Image Classifiers
Deep learning models are vulnerable to adversarial examples.As a more threatening type for practical deep learning systems,physical adversarial examples have received extensive research attention in recent years.Most of the exist-ing methods use the local adversarial patch noise to attack the image classification model in the physical world.However,the attack effect of 2D patches in 3D space would inevitably decline due to the change in the view angle.To address this is-sue,the proposed Adv-Camou method uses spatial combination transformation to generate training examples of arbitrary viewpoints and transformed backgrounds in real time.Moreover,the cross-entropy loss between the prediction class and tar-get class is minimized to make the model output the specified incorrect class.In addition,the established 3D scene can eval-uate different attacks fairly and reproducibly.The experimental results show that the coated adversarial camouflage generat-ed by the Adv-Camou method can fool image classifiers from arbitrary viewpoints.In the 3D simulation scene,the average targeted attack success rate of Adv-Camou is more than 25%higher than that of piecing together patches.The success rate of black-box targeted attacks on the Clarifai commercial classification system reaches 42%.In addition,the average attack success rate of 3D printing model experiments in the real world is about 66%,which significantly demonstrates that our method outperforms state-of-the-art methods.

adversarial exampleadversarial camouflageadversarial attackimage classificationdeep neural net-work

段晔鑫、贺正芸、张颂、詹达之、王田丰、林庚右、张锦、潘志松

展开 >

陆军军事交通学院镇江校区,江苏镇江 212003

陆军工程大学指挥控制工程学院,江苏南京 210007

湖南工业大学轨道交通学院,湖南株洲 412007

北京电子科技学院网络空间安全系,北京 100071

展开 >

对抗样本 对抗伪装 对抗攻击 图像分类 深度神经网络

国家自然科学基金

62076251

2024

电子学报
中国电子学会

电子学报

CSTPCD北大核心
影响因子:1.237
ISSN:0372-2112
年,卷(期):2024.52(3)
  • 22