首页|面向交通场景基于双注意力机制和自适应代价卷的自监督单目深度估计

面向交通场景基于双注意力机制和自适应代价卷的自监督单目深度估计

扫码查看
针对当前交通场景下自监督单目深度估计存在特征表达能力弱、深度图局部细节模糊、深度估计精度低的问题,提出一种基于双注意力机制和自适应代价卷的自监督单目深度估计方法.该方法首先利用双注意力机制的特征提取网络,结合通道注意力和空间注意力,对提取的场景特征进行自适应加权,增强特征表达能力.其次,根据提取的全局特征自适应的构建代价卷,引导网络学习精细的深度特征,提升网络模型对深度图局部细节的学习能力,解决现有方法深度估计精度低的问题.在自动驾驶公开数据集KITTI、Cityscapes上的实验结果表明,本文方法优于目前主流方法.
Self-Supervised Monocular Depth Estimation for Traffic Scenes Based on Dual Attention Mechanism and Adaptive Cost Volume
Aiming at the problems of self-supervised monocular depth estimation in current traffic scenarios,such as weak feature expression ability,fuzzy local details of depth map and low accuracy of depth estimation,a self-supervised monocular depth estimation method based on dual attention mechanism and adaptive cost volume is proposed.Firstly,a du-al attention mechanism combining channel attention and spatial attention is used to adaptively weight the extracted scene features to enhance the feature expression ability of the feature extraction network.Secondly,according to the adaptively constructed cost volume of extracting global features,the network is guided to learn fine depth features,which improves the learning ability of the network model for the local details of the depth map and solves the problem of low accuracy of exist-ing depth estimation methods.Experimental results on public datasets KITTI and Cityscapes show that the proposed meth-od is superior to the current mainstream methods.

monocular depth estimationself-supervisionattention mechanismadaptivecost volume

武港、刘威、胡骏、程帅、杨文兴、孙令岿

展开 >

东北大学信息科学与工程学院,辽宁沈阳 110167

东软睿驰汽车技术有限公司,辽宁沈阳 110179

东北大学计算机科学与工程学院,辽宁沈阳 110167

单目深度估计 自监督 注意力机制 自适应 代价卷

辽宁省"兴辽人才计划"项目辽宁省"揭榜挂帅"科技重大专项项目国家自然科学基金

XLYC19020292022JH1/10400030U22A2043

2024

电子学报
中国电子学会

电子学报

CSTPCD北大核心
影响因子:1.237
ISSN:0372-2112
年,卷(期):2024.52(5)