首页|基于多智能体深度强化学习的车联网频谱共享

基于多智能体深度强化学习的车联网频谱共享

扫码查看
针对高动态车联网环境中基站难以收集和管理瞬时信道状态信息的问题,提出了基于多智能体深度强化学习的车联网频谱分配算法.该算法以车辆通信延迟和可靠性约束条件下最大化网络吞吐量为目标,利用学习算法改进频谱和功率分配策略.首先通过改进DQN模型和Exp3策略训练隐式协作智能体.其次,利用迟滞性Q学习和并发体验重放轨迹解决多智能体并发学习引起的非平稳性问题.仿真结果表明,该算法有效载荷平均成功交付率可达95.89%,比随机基线算法提高了16.48%,可快速获取近似最优解,在降低车联网通信系统信令开销方面具有显著优势.
Multi-Agent Reinforcement Learning Enabled Spectrum Sharing for Vehicular Networks
Aiming at the problem that it is difficult for base stations to collect and manage instantaneous channel state information in high dynamic vehicle networking environment,a spectrum allocation algorithm for vehicle networking based on multi-agent deep reinforcement learning is proposed.The algorithm aims to maximize the network throughput under the constraints of vehicle communication delay and reliability,and uses the learning algorithm to improve the spectrum and power allocation strategy.Firstly,the implicit cooperative agent is trained by improving DQN model and EXP3 strategy.Secondly,the nonstationary problem caused by multi-agent concurrent learning is solved by using hysteretic Q-learning and concurrent experience replay trajectory.The simulation results show that the average successful delivery rate of the payload of the proposed algorithm can reach 95.89%,which is 16.48%higher than the random baseline algorithm.It can quickly ob-tain the approximate optimal solution,and has significant advantages in reducing the signaling overhead of the Internet of vehicles communication system.

Vehicular networkDistributed spectrum sharingMulti agentDeep reinforcement learning

王为念、苏健、陈勇、张建照、唐震

展开 >

南京信息工程大学计算机与软件学院,江苏南京 210044

国防科技大学第六十三研究所,江苏南京 210007

车联网 分布式频谱共享 多智能体 深度强化学习

国家自然科学基金国家自然科学基金

6180219662131005

2024

电子学报
中国电子学会

电子学报

CSTPCD北大核心
影响因子:1.237
ISSN:0372-2112
年,卷(期):2024.52(5)