首页|隐空间采样与隐蔽特征提取的CR-GAN复杂无线信道建模

隐空间采样与隐蔽特征提取的CR-GAN复杂无线信道建模

扫码查看
为了更准确地建模随机无线信道,提出一种自适应增强条件生成对抗网络信道建模方法.其采用扩展的生成对抗网络(Generative Adversarial Network,GAN)开展训练,以近似估计无线信道响应,模拟真实无线环境信道.为了改善GAN训练稳定性和学习能力,引入条件信息和梯度惩罚项,并提出一种增强条件生成对抗网络框架,用于提取信道隐蔽特征.此外,还提出隐空间采样策略,以增加随机变量与生成数据的互信息量,提高所提框架的信道建模性能.仿真表明:所提框架能很好地模拟复杂无线信道分布.在信噪比为10dB时,与现有GAN训练方法相比,其归一化均方误差性能改善约24%.
CR-GAN Complex Wireless Channel Modeling with Hidden Space Sampling and Hidden Feature Extraction
To accurately model random wireless channels,an adaptive channel modeling framework based on a strengthened conditional generative adversarial network (GAN) is proposed. It utilizes the extended GAN for training to ap-proximately estimate the response of wireless channels and thus stimulate the actual wireless channels. To improve both the GAN training stability and learning capability,conditional information and gradient penalty terms are introduced. Besides,a strengthened conditional GAN frame,named condition reinforcement GAN (CR-GAN),is proposed to extract the essential hidden characteristics of wireless channels. In addition,a hidden space sampling strategy is utilized to increase the mutual information between the potential variables and generative data for the improved channel modeling performance of the pro-posed framework. Simulation results demonstrate that,at a signal-to-noise ratio of 10dB,the proposed CR-GAN frame-work outperforms current GAN-based models by reducing 24% of the normalized mean squared error.

wireless communicationdeep learningchannel modelinggenerative adversarial networks

姜斌、程子巍、包建荣、吕鑫、赵宜楠

展开 >

杭州电子科技大学通信工程学院,浙江杭州 310018

杭州电子科技大学电子信息学院,浙江杭州 310018

无线通信 深度学习 信道建模 生成对抗网络

浙江省自然科学基金

LZ24F010005

2024

电子学报
中国电子学会

电子学报

CSTPCD北大核心
影响因子:1.237
ISSN:0372-2112
年,卷(期):2024.52(6)
  • 3