首页|伯努利生成矩阵码中的统计力学性质

伯努利生成矩阵码中的统计力学性质

扫码查看
从统计物理的角度,结合自旋玻璃理论与复杂网络理论,系统地研究了伯努利系统低密度生成矩阵码的统计力学性质.首先给出系统低密度生成矩阵码的伯努利构造、编译码框架,并讨论节点度分布以及正规图与Erdös-Rényi(ER)随机图的联系.然后研究自旋玻璃理论框架下的编译码模型、码本与微观构型的关系、空腔方法与消息传递方程,提出针对系统码的种群动力学算法来高效分析其渐近性能.最后提出正规图配置模型(Normal Graph Configuration Model,NGCM)生成具有连接偏好性的正规图,研究异配性对置信传播(Belief Propagation,BP)译码算法性能的影响,并进一步分析其机理.仿真结果表明,种群动力学算法与BP译码算法本质上相同,但前者不局限于某个具体的码,因此在分析码集的渐近性能时更具优势.此外,适当的异配性能够显著提升BP算法在瀑布区的译码性能,获得更低误码率(Bit Error Rate,BER)并且降低译码迭代次数(复杂度).
Statistical Mechanics Properties of Bernoulli Generator Matrix Codes
From the perspective of statistical physics,with the theory of spin glasses and complex networks,this pa-per systematically studies the statistical mechanics properties of Bernoulli systematic low-density generator matrix codes. First,we introduce Bernoulli construction of the systematic low-density generator matrix codes,encoding and decoding framework,and discuss the distribution of degree as well as the connection between normal graph and Erdös-Rényi (ER) random graphs. Then,we study the encoding and decoding model under the spin glasses theory,the association between co-debook and configuration,cavity method and message-passing equation,and propose the population dynamics algorithm for systematic codes to perform asymptotic performance analysis efficiently. Finally,we propose the normal graph configura-tion model (NGCM) to generate normal graph with connection preference,study the effect of disassortativity on BP decod-ing performance and analyze the mechanism. The simulation results show that,although the population dynamics is essen-tially the same as the BP algorithm,the former is not limited to a concrete code,thus having an advantage in asymptotic analysis for code ensemble. In addition,appropriate disassortativity can significantly improve the BP decoding performance in the waterfall region,achieving lower bit error rate (BER) and reducing the iteration number of decoding (hence the com-plexity).

spin glassescomplex networkssystematic low-density generator matrix codescavity methodbelief propagation decoding algorithmdisassortativity

孟凡辉、马啸

展开 >

中山大学系统科学与工程学院,广东广州 510006

中山大学计算机学院,广东广州 510006

广东省信息安全技术重点实验室,广东广州 510006

自旋玻璃 复杂网络 系统低密度生成矩阵码 空腔法 置信传播译码算法 异配性

国家重点研发计划

2021YFA1000500

2024

电子学报
中国电子学会

电子学报

CSTPCD北大核心
影响因子:1.237
ISSN:0372-2112
年,卷(期):2024.52(6)
  • 2