首页|基于跨尺度相似先验的遥感图像时空融合算法

基于跨尺度相似先验的遥感图像时空融合算法

扫码查看
遥感卫星图像在空间分辨率和时间分辨率之间权衡导致图像序列的时空矛盾.时空图像融合提供了一个生成高空间分辨率和高时间分辨率图像的解决方案,以满足各种地球观测应用.基于稀疏表示的时空融合算法通过联合训练字典和稀疏编码表示建立高低空间分辨率图像之间的关系,为物候变化、类型变化等各种情况提供了统一的融合框架.然而,多源遥感图像来自于不同的传感器,高低空间分辨率图像之间关系模型暗含有传感器映射关系,导致模型设备依赖.针对该问题,本文提出将多源遥感图像时空融合过程分解为传感器偏差校正和时空融合两个子问题,即设备依赖部分和设备无关部分.传感器偏差校正部分可以作为时空融合预处理模块,提高融合精度,并且使得后续的融合模型更加具有普适性.当高低空间分辨率图像空间分辨率差异较大时,"高低空间分辨率图像稀疏系数一致"的假设带来的融合误差非常突出.针对该问题,本文提出基于跨尺度相似先验的遥感图像时空融合算法,利用跨尺度相似块构建稀疏结构先验的正则项,优化稀疏表示的目标函数,并构建中间尺度图像,降低跨尺度相似块的二义性.本文分别使用3组典型场景的实验数据集与其他算法进行对比,实验结果表明,在BOREAS数据集上,与次优的指标相比,本文算法的结构相似度(Structural SIMilarity,SSIM)提高了4.2%,光谱角(Spectral Angle Mapper,SAM)提高了4.6%;在CIA数据集上,与次优的指标相比,本文算法的SSIM提高了2.7%,SAM提高了12.8%;在LGC数据集上,与次优的指标相比,本文算法的SSIM提高了7.1%,SAM提高了16.3%;证明本文算法在空间和光谱特性上表现出优秀的特性.
A Spatiotemporal Fusion Algorithm of Remote Sensing Images Based on Cross-Scale Similarity Prior
The trade-off between spatial and temporal resolution of satellite images leads to spatial and temporal con-tradictions in image sequences. Spatiotemporal image fusion provides a solution to generate high spatial resolution and high temporal resolution images to satisfy various earth observation applications. The spatiotemporal fusion algorithm based on sparse representation establishes the relationship between high and low spatial resolution images by jointly training the dic-tionary and sparse coding representation,which provides a unified fusion framework for phenological change and type change. However,the multi-source remote sensing images come from different sensors,and the relationship model between high and low spatial resolution images implies the sensor mapping. This inevitably leads to that the model is device depen-dent. To solve the problem,we decompose the multi-source remote sensing spatiotemporal fusion process into two sub-problems,device dependent sensor bias correction and device independent spatiotemporal fusion. The sensor bias correction can be used as a preprocessing module to improve the universality and accuracy of subsequent fusion models. When there are large space scale gaps between high and low spatial resolution image,the assumption that "the sparse coefficients of high and low spatial resolution images are the same" will bring about very significant fusion errors. To solve the problem,we optimize the objective function of sparse representation using cross-scale similarity prior. Intermediate-scale images are constructed to reduce ambiguity of cross-scale similar patches and improve the accuracy of cross-scale similar patches. Ex-perimental results in three typical scenarios demonstrate the generalization ability of our algorithm. The contrastive experi-ments show that on the BOREAS dataset,compared to suboptimal indicators,SSIM (Structural SIMilarity) is improved by 4.2%,SAM (Spectral Angle Mapper) is increased by 4.6%;On the CIA dataset,compared to suboptimal indicators,SSIM is increased by 2.7%,and SAM is increased by 12.8%;On the LGC dataset,compared to suboptimal indicators,SSIM is in-creased by 7.1%,and SAM is increased by 16.3%. Our algorithm is superior to other compared methods in spatial and spec-tral performance.

remote sensingspatiotemporal fusionsparse representationcross-scale similarity

方帅、万旗、曹洋

展开 >

合肥工业大学计算机与信息学院,安徽合肥 230000

工业安全与应急技术安徽省重点实验室,安徽合肥 230000

大数据知识工程教育部重点实验室(合肥工业大学),安徽合肥 230000

中国科学技术大学,安徽合肥 230000

展开 >

遥感 时空融合 稀疏表示 跨尺度相似

国家自然科学基金国家自然科学基金

6187232761175033

2024

电子学报
中国电子学会

电子学报

CSTPCD北大核心
影响因子:1.237
ISSN:0372-2112
年,卷(期):2024.52(6)
  • 1