首页|联合时延-多普勒-角度的无源雷达目标定位凸优化算法

联合时延-多普勒-角度的无源雷达目标定位凸优化算法

扫码查看
针对分布式多输入多输出雷达中联合时延-多普勒-角度测量的运动目标定位问题,提出了一种基于半正定松弛的凸优化定位算法,改善了测量误差较大时定位误差偏离克拉美罗界的阈值效应.首先,将定位问题表述为最大似然估计问题,通过引入辅助变量将定位问题转化为带约束的加权最小二乘优化问题,然后使用半正定松弛技术,转化为半正定规划凸问题,并采用内点法对该凸问题求解得到目标位置和速度估计.由于凸优化问题的局部最优解就是全局最优解,本文算法具有良好的全局收敛性.仿真结果表明,与现有算法相比,本文算法的定位误差逼近克拉美罗下界,在大测量误差水平下的定位精度和稳健性优于现有算法.
Convex Solution for Target Localization in Passive MIMO Radar Using Delay,Doppler and Angle Measurements
A convex-optimum localization algorithm based on semidefinite relaxation is proposed for moving tar-get localization from time delay,Doppler shift and angle of arrival measurements in distributed multiple-input multiple-output radar. This algorithm alleviates the threshold effect that the positioning error deviates from the Cramer-Rao lower bound (CRLB) when the measurement error is large. First,the localization problem is formulated as a maximum likeli-hood estimation problem,which is reformulated as a weighted least squares problem with constraints by introducing auxiliary variables and then a convex semidefinite programming (SDP) problem by performing semidefinite relaxation. The SDP problem is solved efficiently by using the interior-point method to obtain the target position and velocity esti-mates. Since the local optimal solution of the convex optimization problem is the global optimal solution,the proposed algorithm has good global convergence. Simulation results demonstrate that the proposed algorithm approaches the CRLB,and achieves higher localization accuracy and robustness than existing algorithms at relatively large measure-ment noise levels.

distributed MIMO radarangle of arrivaltime delayDoppler shiftsemidefinite relaxation

杨静、刘成城、黄洁、李霞

展开 >

中国人民解放军战略支援部队信息工程大学数据与目标工程学院,河南郑州 450001

中国人民解放军32738部队,河南郑州 450001

中国人民解放军78090部队,四川成都 610000

分布式MIMO雷达 角度 时延 多普勒频率 半正定松弛

国家自然科学基金河南省自然科学优秀青年基金

62071490212300410095

2024

电子学报
中国电子学会

电子学报

CSTPCD北大核心
影响因子:1.237
ISSN:0372-2112
年,卷(期):2024.52(6)
  • 1