首页|基于纵横比自适应的相关滤波跟踪算法

基于纵横比自适应的相关滤波跟踪算法

扫码查看
由于跟踪过程目标不规则形变的影响,采用固定纵横比的尺度模型无法精确地估计目标的尺度.为解决该问题,本文提出基于纵横比自适应的相关滤波跟踪算法.基于fDSST(fast Discriminative Scale Space Tracking)算法,训练学习纵横比模型,更新目标的纵横比,获取更精确的目标尺度.在此基础上,本文设计了平滑修正方案以及学习率自适应机制,可以有效地缓解因目标出现遮挡导致的模型漂移问题.在OTB100、VOT2016和VOT2018数据集上与其他跟踪算法进行对比实验,结果表明本文算法改善了基准算法的性能,特别是在OTB100上的总体准确率和成功率比fDSST提高了9.6%和6.2%.
Correlation Filtering Tracking Algorithm Based on Adaptive Aspect-Ratio
Due to the irregular deformation of target in the tracking process,it is unable to accurately estimate the tar-get scale,while using the scale model with fixed aspect ratio. In this paper,we propose an aspect-ratio-based correlation fil-tering tracking algorithm to address this problem. Based on the fDSST (fast Discriminative Scale Space Tracking) algo-rithm,first train and learn an aspect-ration model to update the aspect ratio of the target,which could help to obtain a more accurate target scale. On this basis,this paper designs a smoothing correction scheme and an adaptive learning rate mecha-nism to alleviate the model drift and achieve more accurate tracking. The results of comparative experiments on OTB100,VOT2016 and VOT2018 datasets show that the proposed algorithm improves the performance of the baseline algorithm. Es-pecially,the overall precision and success rate of the proposed algorithm on OTB100 are 9.6% and 6.2% higher than those of fDSST.

object trackingcorrelation filteraspect ratioscale estimationsmoothing correctionadaptive learning rate

钟钰彬、杨鹏、窦磊

展开 >

南京理工大学瞬态物理国家重点实验室,江苏南京 210094

目标跟踪 相关滤波 纵横比 尺度估计 平滑修正 学习率自适应

国家自然科学基金瞬态物理国家重点实验室基金项目Foundation of National Key Laboratory of Transient Physics

6090408560904085

2024

电子学报
中国电子学会

电子学报

CSTPCD北大核心
影响因子:1.237
ISSN:0372-2112
年,卷(期):2024.52(6)
  • 13