首页|基于双层联邦学习的高动态车联网业务边缘协作计算机制

基于双层联邦学习的高动态车联网业务边缘协作计算机制

扫码查看
联邦学习作为一种新兴的分布式机器学习架构,允许车联网中多个车辆终端进行本地模型训练,并在兼顾数据隐私保护的条件下实现模型的全局聚合,从而提供可靠的车联网服务.然而,在联邦学习训练过程中,车辆终端往往因其高移动性在不同区域间切换训练,导致全局模型精度低.此外,恶意终端频繁上传无效或错误模型数据将导致车联网服务可靠性差.因此,本文提出了一种基于双层联邦学习的高动态车联网业务边缘协作计算机制.首先,综合考虑车辆终端的移动性、计算能力和可靠性,构建了终端服务能力模型,并提出了基于深度强化学习的边缘协作计算域构建算法,通过将多个边缘节点覆盖下的车辆终端进行聚簇训练,降低了终端本地模型的切换概率,从而保证联邦学习模型训练的持续性.进而,构建了包含边缘协作计算域内聚合层和域间聚合层的双层联邦学习框架,分别采用基于自适应聚合因子的本地模型半异步聚合机制和基于数据量的区域模型异步聚合机制,提升了联邦学习系统的聚合效率.特别地,考虑终端高速移动引起的跨域问题,引入了本地模型部分条件更新机制,避免了高质量模型被低质量模型覆盖的情况,进一步提高了全局模型准确率和系统资源利用率.仿真结果表明,本文所提机制在模型精度和服务可靠性等方面均优于本地计算、同步联邦学习和异步联邦学习算法.
Dual-Layer Federated Learning Based Edge Collaborative Computing Mechanism for High Dynamic Internet of Vehicle Businesses
As an emerging distributed machine learning architecture,federated learning (FL) allows multiple users to train local models and achieve global aggregation of models with data privacy protection,thus providing reliable Internet of Vehicle (IoV) services. However,in the training process of FL,many training terminals may switch among domains due to the high mobility,resulting in low accuracy of the global model. Besides,malicious terminals may frequently upload invalid or incorrect model data which leads to low service reliability. Therefore,we build the dual-layer FL based edge collabora-tive computing mechanism for high dynamic IoV businesses. Firstly,we comprehensively consider the mobility,computing ability and reliability to construct the service capability model for the terminal,and then propose the edge collaborative com-puting domain (ECCD) construction algorithm based on deep reinforcement learning. By clustering the vehicle terminals covered by multiple edge nodes,the switching probability of the terminal local model will be reduced,and the sustainability of the FL model training can be guaranteed. Furthermore,we design a dual-layer FL framework including the inter-ECCD aggregation layer and cross-ECCD aggregation layer,respectively. It adopts the semi-asynchronous aggregation mechanism for local models based on the adaptive aggregation factor in the inter-ECCD aggregation layer,and the asynchronous aggre-gation mechanism for domain's regional model based on data volume in the cross-ECCD aggregation layer,which jointly improve the aggregation efficiency of the FL system. In particular,considering that the high speed terminals may cause the cross-domain problem,we introduce the partial conditional update mechanism for the local model to avoid the situation that the high-quality models are covered by the low-quality models,which further improves the accuracy of the global model and the utilization of FL system resources. The simulation results verify that the proposed framework outperforms the local computing and asynchronous/synchronous FL algorithms in terms of model accuracy and service reliability.

federated learningedge computingreliabilityhigh dynamicInternet of Vehicle

徐思雅、郭佳惠

展开 >

北京邮电大学网络与交换技术全国重点实验室,北京 100876

联邦学习 边缘计算 可靠性 高动态 车联网

国家自然科学基金工业互联网创新发展工程项目

62201074

2024

电子学报
中国电子学会

电子学报

CSTPCD北大核心
影响因子:1.237
ISSN:0372-2112
年,卷(期):2024.52(7)