首页|联合多视角Transformer编码与在线融合互学习的乳腺癌病理图像分类模型

联合多视角Transformer编码与在线融合互学习的乳腺癌病理图像分类模型

扫码查看
乳腺癌是女性最常见的癌症.单一网络在乳腺癌病理图像分类中存在缺陷,卷积神经网络无法提取全局上下文,而Transformer不能准确描述局部细节.本文提出联合多视角Transformer编码与在线融合互学习的乳腺癌病理图像分类模型(Multi-View Transformer Online Fusion Mutual Learning,MVT-OFML).采用ResNet-50(Residual Network-50)提取图像局部特征,设计多视角Transformer编码模块,捕获图像中全局上下文;联合Logits和中间特征层构建OFML框架,实现ResNet-50与多视角Transformer编码模块间双向传递知识,使2个网络优势互补以完成乳腺癌病理图像分类.实验表明,在BreakHis和BACH数据集上,MVT-OFML的准确率比最强基线分别提升0.90%和2.26%,F1均值比最强基线分别提升4.75%和3.21%.
Breast Cancer Pathological Image Classification Model via Combining Multi-View Transformer Coding and Online Fusion Mutual Learning
Breast cancer is the most common cancer in women. The single neural network used in breast cancer path-ological image classification has the following defects:the convolutional neural network (CNN) lacks the ability to extract global context information while the Transformer lacks the ability to depict local lesion details. To alleviate the problem,a novel model,named multi-view Transformer coding and online fusion mutual learning (MVT-OFML),is proposed for breast cancer pathological image classification. First,ResNet-50 is employed to extract local features in images. Then,a new multi-view Transformer (MVT) coding module is designed to capture the global context information. Finally,a novel online fusion mutual learning (OFML) framework based on the Logits and middle feature layers is designed to implement the bi-directional knowledge transfer between ResNet-50 and the MVT coding module. This makes the two networks com-plement each other to complete breast cancer pathological image classification. Experiments validated on BreakHis and BACH show that compared to the best baseline,the performance improvements of accuracy are 0.90% and 2.26%,respec-tively,whereas the corresponding improvements of average F1 score are 4.75% and 3.21%,respectively.

breast cancerpathological image classificationmulti-view Transformerconvolution neural networkonline fusion mutual learning

李广丽、叶艺源、吴光庭、李传秀、吕敬钦、张红斌

展开 >

华东交通大学信息工程学院,江西南昌 330013

华东交通大学软件学院,江西南昌 330013

乳腺癌 病理图像分类 多视角Transformer 卷积神经网络 在线融合互学习

国家自然科学基金江西省重点研发计划重点项目(揭榜挂帅)江西省自然科学基金江西省社科规划项目江西省教育厅科技项目江西省教育厅科技项目江西省研究生创新基金

6216101120223BBE5103620212BAB20200622TQ01GJJ200628GJJ2200639YC2022-s546

2024

电子学报
中国电子学会

电子学报

CSTPCD北大核心
影响因子:1.237
ISSN:0372-2112
年,卷(期):2024.52(7)