首页|门控机制的图像分类网络

门控机制的图像分类网络

扫码查看
为了提取更具表达能力和区分度的重点特征,减少网络传递时关键特征的流失,提高神经网络图像分类能力,提出一种新的门控机制图像分类网络(image classification Network of Gating Mechanism,GMNet).首先,使用门控卷积提取浅层特征,通过门控机制选择性地进行卷积操作,提高网络对原始图像关键特征的提取能力;其次,设计了一种插值门控卷积(Interpolation Gated Convolution,IGC)模块,利用Lanczos插值与门控卷积相结合,强化浅层特征的同时提取更具区分度的特征,提高特征的非线性表达能力;然后,设计了大核门控注意力机制(Large kernel Gated At-tention Mechanism,LGAM)模块,将大核注意力与门控卷积相融合,实现了特征的选择性增强和选择性融合,提高关键区域特征的贡献度;最后,将大核门控注意力机制模块嵌入到残差分支中,让模型更有效地学习输入数据的特征和上下文信息,减少关键特征在网络信息传递时流失,提高网络的分类能力.本文方法在图像数据集CIFAR-10、CI-FAR100、SVHN、Imagenette、Imagewoof上分别达到了97.05%、83.68%、97.68%、90.60%、83.05%的分类准确率,与当前先进的方法相比分别平均提高了3.26%、7.08%、3.44%、2.65%、5.02%.与现有主流网络模型相较,本文门控机制图像分类网络能够增强特征的非线性表达能力,提取更具表达能力和区分度的重点特征,减少关键特征流失,提高关键区域特征的贡献度,有效地提高神经网络图像分类能力.
Image Classification Network of Gating Mechanism
To extract more expressive and discriminative key features,reduce the loss of key features during network transmission,and improve the image classification ability of neural networks,a new image classification network of gating mechanism (GMNet) is proposed. Firstly,the shallow features are extracted using gated convolution,and the convolution operation is selectively performed through the gating mechanism to improve the network's ability to extract key features of the original image. Secondly,an interpolation gated convolution (IGC) module is designed,which combines Lanczos inter-polation with gated convolution to enhance shallow features while extracting more discriminative features,improving the non-linear expression ability of features. Then,a large kernel gated attention mechanism (LGAM) module is designed,which combines large kernel attention with gated convolution to achieve selective enhancement and fusion of features,and improve the contribution of key region features. Finally,the large kernel gated attention mechanism module is embedded in-to the residual branch to enable the model to learn input data's features and contextual information more effectively,reduce the loss of key features during network information transmission,and improve the network's classification ability. The method achieved classification accuracy of 97.05%,83.68%,97.68%,90.60%,and 83.05% on image datasets CIFAR-10,CIFAR-100,SVHN,Imagenette,and Imagewoof,respectively,and improved on average by 3.26%,7.08%,3.44%,2.65%,and 5.02% compared to current advanced methods. Compared with existing mainstream network models,the gated mecha-nism image classification network proposed in this paper can enhance the non-linear expression ability of features,extract more expressive and discriminative vital features,the loss of key features,improve the contribution of key region features,and effectively improve the image classification ability of neural networks.

image classificationgating mechanismgated convolutioninterpolation gated convolutionlarge kernel gated attentionresidual network

姜文涛、高原、袁姮、刘万军

展开 >

辽宁工程技术大学软件学院,辽宁葫芦岛 125105

图像分类 门控机制 门控卷积 插值门控卷积 大核门控注意力 残差网络

国家自然科学基金辽宁省自然科学基金辽宁省教育厅重点基金

6160121320170540426LJYL049

2024

电子学报
中国电子学会

电子学报

CSTPCD北大核心
影响因子:1.237
ISSN:0372-2112
年,卷(期):2024.52(7)