首页|基于结构感知的多图学习方法

基于结构感知的多图学习方法

扫码查看
多图学习是一种非常重要的学习范式.与多示例学习相比,在多图学习中包表示一个对象,包中的每一个图对应一个子对象.这种数据表示方法能够表达子对象的结构信息.但是,现有的多图学习方法不仅隐含假设包内的图满足独立同分布,而且多采用将多图学习问题转变为多示例学习问题的技术思路.这类多图学习方法容易损失图自身及图间的结构信息.针对上述问题,本文提出一种基于结构感知的多图学习方法,有效学习图自身和图间的结构信息.该方法利用图核,通过计算图之间的相似度保留图自身的结构信息,通过生成包级图表达图间的结构信息,并且设计包编码器有效学习图间的结构信息.在NCI(1)、NCI(109)和AIDB三个多图数据集上的实验结果表明,所提方法相较于现有方法在准确率、精确率、F1值和AUC上分别平均提高了5.97%、3.44%、4.48%和2.56%,在召回率上平均降低了2.12%.
Multi-Graph Learning Based on Structure-Aware
Multi-graph learning is a very important learning paradigm. Compared with multi-instance learning,in multi-graph learning,a bag represents an object,and each graph in the bag corresponds to a sub-object. This data representa-tion method can express the structural information of sub-objects. However,existing multi-graph learning methods not only implicitly assume that the graphs in the bag satisfy independent and identical distribution,but also mostly adopt the techni-cal idea of transforming multi-graph learning problems into multi-instance learning problems. This type of multi-graph learning method easily loses the structural information of the graph itself and the relationships between graphs. In response to the above problems,a multi-graph learning method based on structure awareness is proposed to effectively learn the struc-tural information of the graph itself and the relationships between graphs. This method uses graph kernels to retain the struc-tural information of the graph itself by calculating the similarity between graphs,expresses the structural information be-tween graphs by generating bag-level graphs,and designs a bag encoder to effectively learn the structural information be-tween graphs. Experimental results on the NCI(1),NCI(109),and AIDB datasets show that compared with existing meth-ods,the proposed method improved by 5.97%,3.44%,4.48%,and 2.56% in accuracy,precision,F1 value,and AUC respec-tively. In terms of recall rate decreased by 2.12%.

multi-graph learninggraph kernelstructural informationbag-structure graphindependent identical distribution

付东来、高泽安

展开 >

中北大学软件学院,山西太原 030051

多图学习 图核 结构信息 包结构图 独立同分布

2024

电子学报
中国电子学会

电子学报

CSTPCD北大核心
影响因子:1.237
ISSN:0372-2112
年,卷(期):2024.52(7)