首页|一种基于CatBoost优化的光伏阵列故障诊断模型

一种基于CatBoost优化的光伏阵列故障诊断模型

扫码查看
大部分光伏电站地处偏僻、地形复杂的区域,受到外界环境的影响,易发生各种故障.而传统的光伏阵列故障诊断方法存在精度不高以及光伏数据利用率低等问题.针对以上问题,本文先是通过引入Levy飞行策略和步长因子动态调整策略改进麻雀搜索算法(Sparrow Search Algorithm,SSA),降低SSA算法陷入局部最优的风险,提升SSA算法的寻优能力.然后采用改进的Levy步长调整麻雀搜索算法(Levy Adjustment Sparrow Search Algorithm,LASSA)对CatBoost模型关键超参数进行寻优,提出了一种基于CatBoost并以LASSA为优化策略的光伏阵列故障诊断模型LASSA-CatBoost,以实现光伏阵列的短路、开路、老化和阴影遮挡故障的精确诊断.实验结果表明,LASSA-Cat-Boost模型的故障诊断准确率为99.7%,相较于优化前的CatBoost模型,准确率提高了3.6%.与现有的光伏阵列故障诊断模型相比,LASSA-CatBoost模型的准确性和稳定性更高.
A CatBoost Optimization-Based Fault Diagnosis Model for Photovoltaic Arrays
Most of the photovoltaic power stations are located in remote areas with complex terrain,which are affect-ed by the external environment and prone to various faults. The traditional PV array fault diagnosis methods have the prob-lems of low accuracy and low utilization of PV data. Aiming at the above problems,in this paper,we first improve the spar-row search algorithm (SSA) by introducing the Levy flight strategy and the dynamic adjustment strategy of the step factor to reduce the risk of the SSA algorithm falling into the local optimum and improve the optimization ability of the SSA algo-rithm. Then the improved levy adjustment sparrow search algorithm (LASSA) is used to optimize the key hyperparameters of the CatBoost model,and a photovoltaic array fault diagnosis model LASSA-based on CatBoost and using LASSA as the optimization strategy is proposed. CatBoost for accurate diagnosis of short-circuit,open-circuit,aging and shadow masking faults in PV arrays. The experimental results show that the fault diagnosis accuracy of the LASSA-CatBoost model is 99.7%,which is 3.6% higher compared to the CatBoost model before optimization. Compared with the existing PV array fault diagnosis models,the LASSA-CatBoost model has higher accuracy and stability.

photovoltaic arrayfault diagnosisI-V characteristic curveCatBoostLevy adjustment sparrow search algorithm

彭自然、许怀顺、肖伸平

展开 >

湖南工业大学电气与信息工程学院,湖南株洲 412007

湖南省电传动控制与智能装备重点实验室,湖南株洲 412007

光伏阵列 故障诊断 I-V特性曲线 CatBoost Levy adjustment sparrow search algorithm

国家重点研发计划基金湖南省教育厅重点科研项目湖南省自科基金湖南省自科基金

2019YFE012260022A04232023JJ602672022JJ50073

2024

电子学报
中国电子学会

电子学报

CSTPCD北大核心
影响因子:1.237
ISSN:0372-2112
年,卷(期):2024.52(7)