首页|改进自适应模型池的在线异常检测算法

改进自适应模型池的在线异常检测算法

扫码查看
精确的在线异常检测方法是物联网行业发展的核心,其中,以复杂和动态数据流为对象的在线异常识别是研究热点.现有在线异常检测方法存在处理复杂性负载过重问题,离线深度异常检测方法则存在因数据分布变化导致概念漂移问题.针对上述问题,本文提出了改进自适应模型池的在线异常检测框架,该框架可以与基于自动编码器的异常检测方法协作实现在线异常检测.首先,利用基于自动编码器的异常检测模型进行基本异常识别;其次,以自适应模型池为基础,融合概念漂移检测算法准确识别概念漂移,适应动态变化的数据流,解决概念漂移现象;最后,优化自适应模型池的模型合并方法,提升在线异常识别能力.实验结果表明,相比自动编码器模型的流变体和原自适应模型池算法,提出的算法在异常检测精度指标上分别提升了20.2%和5.83%,同时,最佳精度指标高于现有在线异常检测算法约16.7%.
Improved Adaptive Model Pools for Online Anomaly Detection Algorithms
Accurate online anomaly detection methods are at the core of the development of IoT-related industries,in which online anomaly identification targeting complex and dynamic data streams is one of the important research hotspots. Existing online anomaly detection methods suffer from the problem of processing complexity overload,while offline deep anomaly detection methods suffer from the problem of concept drift due to the change of data distribution. To address the above problems,this paper proposes an online anomaly detection framework with improved adaptive model pooling,which can collaborate with autoencoder-based anomaly detection methods to achieve online anomaly detection. Firstly,the basic anomaly identification is carried out using the autoencoder-based anomaly detection model. Secondly,based on the adaptive model pool,the concept drift detection algorithm is integrated to accurately identify concept drift,adapt to the dynamically changing data flow,and solve the concept drift phenomenon. Finally,the model merging method of the optimised adaptive model pool is optimised,which enhances the capability of online anomaly identification. The experimental results show that compared with the flow variant of autoencoder model and the original adaptive model pool algorithm,the proposed algo-rithm improves the anomaly detection accuracy indexes by 20.2% and 5.83% respectively,and meanwhile is higher than the existing online anomaly detection algorithms in the best accuracy indexes by about 16.7%.

unsupervised learningautoencoderconcept driftanomaly detectionadaptive model pooldata stream

项秋艳、訾玲玲、丛鑫

展开 >

重庆师范大学计算机与信息科学学院,重庆 401331

无监督学习 自动编码器 概念漂移 异常检测 自适应模型池 数据流

重庆市教育科学规划重点课题

K22YE205098

2024

电子学报
中国电子学会

电子学报

CSTPCD北大核心
影响因子:1.237
ISSN:0372-2112
年,卷(期):2024.52(7)