首页|YOLO-POD:基于多维注意力机制的高精度PCB微小缺陷检测算法

YOLO-POD:基于多维注意力机制的高精度PCB微小缺陷检测算法

扫码查看
随着电子设备的广泛应用,印刷电路板(Printed Circuit Board,PCB)在电子制造行业中具有重要意义.然而,由于制造过程中的不完美和环境因素的干扰,PCB上可能存在微小的缺陷.因此,开发高效准确的缺陷检测算法对于确保产品质量至关重要.针对PCB微小缺陷检测问题,本文提出了一种基于多维注意力机制的高精度PCB微小缺陷检测算法.为降低网络的模型参数量和计算量,引入部分卷积(Partial Convolution,PConv),将ELAN(Efficient Layer Aggregation Network)模块设计为更加高效的P-ELAN,同时,为增强网络对微小缺陷的特征提取能力,引入多维注意力机制(Multi-Dimensional Attention Mechanism,MDAM)的全维动态卷积(Omni-dimensional Dynamic Convolution,ODConv)并结合部分卷积,设计了POD-CSP(Partial ODconv-Cross Stage Partial)和POD-MP(Partial ODconv-Max Pooling)跨阶段部分网络模块,提出了OD-Neck结构.最后,本文基于(Youo Only Look Once version 7,YOLOv7)提出了对小目标更加高效的YOLO-POD模型,并在训练阶段采用一种新颖的Alpha-SIoU损失函数对网络进行优化.实验结果表明,YOLO-POD的检测精确率和召回率分别达到了98.31%和97.09%,并在多个指标上取得了领先优势,尤其是对于更严格的(mean Average Precision at IoU threshold of 0.75,mAP75)指标,比原始的YOLOv7模型提高28%.验证了YOLO-POD在PCB缺陷检测性能中具有较高的准确性和鲁棒性,满足高精度的检测要求,可为PCB制造行业提供有效的检测解决方案.
YOLO-POD:High-Precision PCB Tiny-Defect Detection Algorithm Based on Multi-Dimensional Attention Mechanism
With the widespread application of electronic devices,printed circuit boards (PCB) hold significant impor-tance in the electronics manufacturing industry. However,due to imperfections in the manufacturing process and interfer-ence from environmental factors,tiny defects may in PCB. Therefore,the development of efficient and accurate defect de-tection algorithms is crucial in ensuring product quality. To address the challenge of detecting tiny defects on PCB,this pa-per proposes a high-precision PCB tiny defect detection algorithm based on multi-dimensional attention mechanism. To re-duce model parameters and computational complexity,partial convolution (PConv) is introduced,and the ELAN module is redesigned as the more efficient P-ELAN. Additionally,to enhance the network's feature extraction capability for tiny de-fects,the omni-dimensional dynamic convolution (ODConv) based on the multi-dimensional attention mechanism (MDAM) is introduced. By combining partial convolution,the POD-CSP (Partial ODConv-Cross Stage Partial) and POD-MP (Partial ODConv-Max Pooling) cross-stage partial network modules are designed,along with the OD-Neck structure. Fi-nally,based on YOLOv7,a more efficient YOLO-POD model for small object detection is proposed,and the network is op-timized during the training phase using a novel loss function called Alpha-SIoU. Experimental results demonstrate that YO-LO-POD achieves a detection precision of 98.31% and recall rate of 97.09%,exhibiting substantial advantages across multi-ple metrics. Notably,it achieves a 28% improvement over the original YOLOv7 model,as to more stringent mAP75 metric. These results validate the high accuracy and robustness of YOLO-POD in PCB defect detection,fulfilling the requirements for high-precision detection and providing an effective detection solution for the PCB manufacturing industry.

PCBtiny-defect detectionpartial odconv-cross stage partialpartial odconv-max poolingomni-dimensional dynamic convolutionmulti-dimensional attention mechanism

郭艳、王智文、赵润星

展开 >

广西科技大学自动化学院,广西柳州 545616

广西科技大学电子工程学院,广西柳州 545006

印刷电路板 小目标缺陷检测 POD-CSP POD-MP 全维动态卷积 多维注意力机制

国家自然科学基金国家自然科学基金广西自然科学基金重点项目广西财经大数据重点实验室开放基金

61962007622660092018GXNSF-DA294001FEDOP2022A06

2024

电子学报
中国电子学会

电子学报

CSTPCD北大核心
影响因子:1.237
ISSN:0372-2112
年,卷(期):2024.52(7)