首页|基于表面肌电分解的皮层肌肉耦合机理研究

基于表面肌电分解的皮层肌肉耦合机理研究

扫码查看
基于表面肌电信号分解还原了肌电信号最原始的组成成分,通过分解后肌电信号段的特征研究神经肌肉系统中脑肌电信息传递规律,可以从生物电信息传递机理探索人体运动的本质.本文分别采集了 9名受试者最大抓握力量的 15%和 30%(15%MVC、30%MVC)所对应的 EEG(ElectroEncephaloGraph)和 sEMC(surface ElectroMyoGraphy)信号,以形态学分解为基础对sEMG信号进行模板重构分解,获得运动单元动作电位MUAP(Motion Unit Action Poten-tial),提取MUAP的幅值、数量和发射速率作为特征,基于该类特征与同步脑电信号的变化趋势以及传递熵值探索大脑皮层与肌肉的信息传递规律.不同抓握力量水平下,30%MVC提取的3个特征均比15%MVC的数值更显著,但两种力量水平提取的3个特征随同步脑电变化趋势相同:当EEG信号形成波峰或波谷信号时,MUAP数量、幅值和发射速率特征均呈现增加的变化趋势,其中MUAP幅值的增加趋势最为明显,且MUAP幅值特征与同步EEG信号的耦合(TE传递熵值)效果最好.虽然力量水平的不同会影响脑肌电信号强弱,但总体呈现的信息传递规律是一致的:当肢体肌肉收缩脑电信号增强而形成波峰或波谷时,MUAP数量、幅值和发射速率3个特征值均呈现上升的变化趋势,其中MUAP幅值特征响应效果最好,该特征能较好体现人体运动控制过程中神经肌肉系统中的信息传递规律.
Mechanism of Corticomuscular Coupling Based on Surface Electromyography Decomposition
Based on the decomposition of surface EMG(ElectroMyoGraphy)signals,the most primitive components of EMG signals are restored.By analyzing the features of the decomposed sEMG(Surface ElectroMyoGraphy)signals,the EEG(ElectroEncephaloGraph)information transmission law in neuromuscular system can be studied,and the bioelectric in-formation transmission mechanism can be explored from the essence of human motion.The EEG and sEMG signals corre-sponding to 15%MVC and 30%MVC of 9 subjects are collected.Then,the motion unit action potential(MUAP)is ob-tained by STA template reconstruction decomposition of sEMG based on morphological decomposition.Then,the ampli-tude of MUAP,the number of MUAP and the firing rate are extracted as features,based on these features the trend of syn-chronous EEG signals and the transmission entropy value,the information transmission law of cortical muscles is explored.Result Under different strength levels,the three features under 30%MVC are larger than those under 15%MVC,but the change trends of the three features are same.When the EEG signal forms a peak or valley signal,MUAP Number,Amp and firing rate all show a trend of increasing.The increasing trend of MUAP amplitude is the most obvious,and the coupling ef-fect of MUAP amplitude features and synchronous EEG signals is the best(transmission entropy value).Conclusion al-though different strength levels affect the strength of the extracted EEG signals,the overall information transfer law is con-sistent:when the intensity of muscle contraction EEG signals is enhanced to form peak or trough signals,the three features show an upward trend,and the MUAP amplitude feature is the best response among the three selected features,that is,this feature can better reflect the information transmission law of neuromuscular system in the process of human motion control.

sEMG signalEEG signalsEMG decompositioncorticomuscular couplingentropy of transfer

席旭刚、王成浩、汪婷、孔万增、厉力华

展开 >

杭州电子科技大学自动化学院,浙江杭州 310018

浙江省脑机协同重点实验室,浙江杭州 310018

杭州电子科技大学计算机学院,浙江杭州 310018

表面肌电 脑电 肌电分解 脑肌电耦合 传递熵

科技部2030重大项目国家自然科学基金国家自然科学基金浙江省重点研发计划

2021ZD0113204U20B2074619711692021C03031

2024

电子学报
中国电子学会

电子学报

CSTPCD北大核心
影响因子:1.237
ISSN:0372-2112
年,卷(期):2024.52(8)
  • 5