首页|基于动态分解和角度惩罚距离的高维多目标进化算法

基于动态分解和角度惩罚距离的高维多目标进化算法

扫码查看
多个领域的优化可归纳为高维多目标优化问题,高维多目标进化算法是解决此类问题的有效方法,然而该方法普遍存在收敛性和多样性较难平衡的问题.针对此问题,本文提出一种基于动态分解和角度惩罚距离的高维多目标进化算法.该算法基于动态分解将种群分成多个类,此过程无需预先设定参考向量,可根据种群自身分布信息进行分解.之后,基于改进的角度惩罚距离从每类中选择个体,从而平衡收敛性与多样性.此外,设计基于Pareto支配、拐点、m近邻角度三原则的锦标赛匹配选择机制.本文算法与9种高维多目标进化算法在27例高维多目标优化测试题上进行对比实验.实验结果表明,本文算法能有效解决不同类型的高维多目标优化问题,并且在不同目标个数上具有较好的稳定性.
Many-Objective Evolutionary Algorithm Based on Dynamic Decomposition and Angle Penalty Distance
The optimization problems in multiple areas can be modelled as many-objective optimization problems,which can be solved using many-objective evolutionary algorithms.However,it is difficult to balance convergence and di-versity.To tackle this issue,this paper proposes a many-objective evolutionary algorithm based on dynamic decomposition and modified angle penalty distance referred to as DAEA(Duplication Analysis based Evolutionary Algorithm).DAEA de-composes the whole population into multiple clusters through dynamic decomposition,which is exempt from the predefined reference vectors and makes full use of the distribution information of the population itself to decompose.Then,DAEA se-lects solutions from each cluster based on modified angle penalty distance to balance convergence and diversity.Besides,DAEA operates mating selection according to Pareto dominance,knee points,and m-nearest angle binary tournament selec-tion.Compared with nine many-objective evolutionary algorithms on 27 many-objective optimization problems,DAEA is effective on many-objective optimization problems with various shapes of Pareto front and stable on different numbers of objectives.

multiobjective optimizationmany-objective optimizationdynamic decompositionangle penalty dis-tance

王旭健、张峰干、姚敏立

展开 >

火箭军工程大学,陕西西安 710025

多目标优化 高维多目标优化 动态分解 角度惩罚距离

国家自然科学基金国家自然科学基金

6200150062071480

2024

电子学报
中国电子学会

电子学报

CSTPCD北大核心
影响因子:1.237
ISSN:0372-2112
年,卷(期):2024.52(8)
  • 3