首页|基于改进T分布烟花-粒子群算法的AUV全局路径规划

基于改进T分布烟花-粒子群算法的AUV全局路径规划

扫码查看
针对传统粒子群算法在处理自主水下机器人(Autonomous Underwater Vehicle,AUV)全局路径规划时面临的寻优时间长、能耗高的问题,本文提出一种改进的T分布烟花-粒子群算法(T-distribution Fireworks-Particle Swarm Optimization Algorithm,TFWA-PSO),该算法融合了烟花算法的高效全局搜索能力和粒子群算法的快速局部寻优特性.在变异阶段,提出自适应T分布变异来扩大搜索范围,并在理论上证明了该变异方式能够使个体在局部最优解附近增强搜索能力.在选择阶段提出了适应度选择策略,淘汰适应度差的个体,解决了传统烟花算法易丢失优秀个体的问题,并对改进的T分布烟花算法与传统烟花算法的收敛速度进行对比.将改进算法的爆炸操作、变异操作和选择策略融合到粒子群算法中,对粒子群算法的速度更新公式进行了改进,同时从理论上对所改进的算法进行了收敛性证明.仿真实验结果表明,TFWA-PSO能够有效规划出一条最短路径,同时与给定的智能优化算法相比,TFWA-PSO在寻找最优路径的时间上平均降低了24.72%,能耗平均降低了17.33%,路径长度平均降低了16.96%.
AUV Global Path Panning Based on Improved T-Distribution Fireworks-Particle Swarm Optimization Algorithm
In response to the long optimization time and high energy consumption faced by traditional particle swarm optimization algorithm in global path planning for autonomous underwater vehicle,this paper proposes an improved T-dis-tribution fireworks-particle swarm optimization algorithm(TFWA-PSO),this algorithm integrates the efficient global search capability of the fireworks algorithm with the rapid local optimization characteristics of the particle swarm optimization algo-rithm.In the mutation stage,an adaptive T-distribution mutation is proposed to expand the search range,and it is theoretical-ly demonstrated that this explosive mutation approach enables individuals to enhance their search ability near the local opti-mal solution.In the selection stage,a fitness selection strategy is proposed to eliminate individuals with poor fitness,solving the problem of the traditional fireworks algorithm's tendency to lose excellent individuals,and comparing the convergence speed between the improved T-distribution fireworks algorithm and the traditional fireworks algorithm.The improved algo-rithm's explosion,mutation operations,and selection strategy are integrated into the particle swarm algorithm.The velocity update formula of the particle swarm algorithm is improved,while the convergence proof of the improved algorithm is proved theoretically.The simulation results indicate that the TFWA-PSO can effectively plan the shortest path.Compared to the given intelligent optimization algorithms,TFWA-PSO on average reduces the time to find the optimal path by 24.72%,lowers energy consumption by 17.33%,and decreases the average path length by 16.96%.

autonomous underwater vehicleglobal path planningfireworks algorithmparticle swarm optimiza-tionadaptive T-distribution mutationconvergence proof

刘志华、张冉、郝梦男、安凯晨、陈嘉兴

展开 >

河北师范大学计算机与网络空间安全学院,河北 石家庄 050024

河北师范大学河北省网络与信息安全重点实验室,河北 石家庄 050024

河北师范大学河北省供应链大数据分析与数据安全工程研究中心,河北 石家庄 050024

河北师范大学数学科学学院,河北 石家庄 050024

河北正定师范高等专科学校,河北 石家庄 050800

展开 >

自主水下机器人 全局路径规划 烟花算法 粒子群算法 自适应T分布变异 收敛性证明

国家自然科学基金国家自然科学基金

6217117961771181

2024

电子学报
中国电子学会

电子学报

CSTPCD北大核心
影响因子:1.237
ISSN:0372-2112
年,卷(期):2024.52(9)