首页|基于多尺度卷积调制的医学图像分割

基于多尺度卷积调制的医学图像分割

扫码查看
当前,越来越多的医学图像分割模型都采用Transformer模型作为基础结构,然而,Transformer模型的计算复杂度与输入序列呈二次关系且需要大量的数据进行预训练才能取得较好的结果,在数据量不足的情况下无法发挥优势;此外,Transformer往往无法有效提取图像的局部信息.相比于Transformer,卷积神经网络则能够很好地规避上述两个问题.为了充分发挥卷积神经网络与Transformer的各自优势并进一步挖掘卷积神经网络的潜力,本文提出一个多尺度卷积调制网络模型(Multi-Scale Convolution Modulation Network,MSCMNet),该模型将视觉Transformer领域模型结构设计方法融入传统卷积网络.采用卷积调制和多尺度特征提取策略,构建基于多尺度卷积调制机制的特征提取模块(Multi-Scale Convolution Modulation,MSCM).并提出高效的patch组合与patch分解策略分别用于特征图的下采样以及上采样,进一步提升模型的表征能力.在腹部多器官、心脏、皮肤癌以及细胞核四个不同类型以及不同规模的医学图像分割数据集上取得的mDice分别为0.805 7、0.923 3、0.923 9、0.854 8,以较低的运算量和参数量取得了最好的分割性能,为卷积神经网络以及Transformer在医学图像分割领域提供了一个新颖而高效的模型结构设计范式.
Medical Image Segmentation Based on Multi-Scale Convolution Modulation
Currently,more and more medical image segmentation models are using Transformer as their basic struc-ture.However,the computational complexity of the Transformer model is quadratic with respect to the input sequence,and it requires a large amount of data for pre-training in order to achieve good results.In situations where there is insufficient da-ta,the Transformer's advantages cannot be fully realized.Additionally,the Transformer often fails to effectively extract lo-cal information from images.In contrast,convolutional neural networks can effectively avoid these two problems.In order to fully leverage the strengths of both convolutional neural networks and Transformers and further explore the potential of convolutional neural networks,this paper proposes a multi-scale convolution modulation network(MSCMNet)model.This model incorporates the design methodology of visual Transformer models into traditional convolutional networks.By using convolution modulation and multi-scale feature extraction strategies,a feature extraction module based on multi-scale con-volution modulation(MSCM)is constructed.Efficient patch combination and patch decomposition strategies are also pro-posed for downsampling and upsampling of feature maps,respectively,further enhancing the model's representation abili-ty.The mDice scores obtained on four different types and sizes of medical image segmentation datasets-multiple organs in the abdomen,heart,skin cancer,and nucleus-are 0.805 7,0.923 3,0.923 9 and 0.854 8,respectively.With lower computa-tional complexity and parameter count,MSCMNet achieves the best segmentation performance,providing a novel and effi-cient model structure design paradigm for convolutional neural networks and Transformers in the field of medical image segmentation.

medical image segmentationmulti-scaleconvolutional modulationTransformer

周新民、熊智谋、史长发、杨健

展开 >

湖南工商大学人工智能与先进计算学院,湖南 长沙 410205

湘江实验室,湖南 长沙 410205

湖南工商大学计算机学院,湖南 长沙 410205

湖南工商大学智能工程与智能制造学院,湖南 长沙 410205

湖南工商大学长沙人工智能社会实验室,湖南 长沙 410205

展开 >

医学图像分割 多尺度 卷积调制 Transformer

国家自然科学基金国家社会科学基金

7209151521BGL231

2024

电子学报
中国电子学会

电子学报

CSTPCD北大核心
影响因子:1.237
ISSN:0372-2112
年,卷(期):2024.52(9)