首页|基于尺度线索增强的无监督单目深度估计

基于尺度线索增强的无监督单目深度估计

扫码查看
由于单目深度估计中图像与深度图存在一对多的对应关系,单目深度估计本身就存在着尺度歧义的问题.因此,本文引入基于多视图立体匹配(Multi-View Stereo,MVS)的单目多帧深度估计方法,构造移动深度,挖掘尺度线索,将传统单目深度估计与MVS深度估计有机结合,以改善单目深度估计几何建模中固有的模糊性问题.在此基础上,设计两个通道注意力模块,分别提高网络的场景结构感知能力和对局部信息的处理能力,从而更充分地融合不同尺度的特征,产生更精确、更清晰的深度预测.在KITTI数据集的测试结果中,本文方法的平均相对误差和平方相对误差相较基准网络分别最高提升4.7%和8.0%,所有误差和准确率指标均超越其他主流的无监督单目深度估计方法.
Unsupervised Monocular Depth Estimation Based on Scale Clue Enhancement
Due to the relationship of one-to-many between images and depth maps in monocular depth estimation,there is a problem of scale ambiguity in monocular depth estimation itself.In order to improve the inherent ambiguity prob-lem in geometric modeling of monocular depth estimation,this paper introduces a monocular multi-frame depth estimation method based on multi-view stereo(MVS)to construct moving depth and dig the scale clues.The traditional monocular depth estimation and MVS depth estimation are organically combined to improve the inherent ambiguity problem in the geo-metric modeling of monocular depth estimation.On this basis,two channel attention modules are designed to improve the network's ability to perceive scene structures and process local information,so as to more fully integrate features of differ-ent scales and produce more accurate and clearer depth maps.In the test results of the KITTI dataset,the average relative er-ror and square relative error of this paper have been improved by 4.7%and 8.0%respectively compared to the baseline net-work,with all error and accuracy indicators surpassing other mainstream unsupervised monocular depth estimation methods.

monocular depth estimationunsupervised learningdeep learningmulti-scalechannel attention

曲熠、陈莹

展开 >

江南大学轻工过程先进控制教育部重点实验室,江苏 无锡 214122

单目深度估计 无监督学习 深度学习 多尺度 通道注意力

国家自然科学基金

62173160

2024

电子学报
中国电子学会

电子学报

CSTPCD北大核心
影响因子:1.237
ISSN:0372-2112
年,卷(期):2024.52(9)