首页|基于粒子群算法优化支持向量回归的电火花加工工艺指标预测模型

基于粒子群算法优化支持向量回归的电火花加工工艺指标预测模型

扫码查看
基于电火花加工过程中放电参数与表面粗糙度之间呈非线性关系,难以找到合适的电参数进行加工,提出了一种基于粒子群算法优化支持向量回归(PSO-SVR)的电火花加工工艺参数预测模型.研究结果表明,PSO-SVR在测试集上的均方根误差(RMSE)为 0.302,决定性系数(R2)为0.994,较传统SVR模型(RMSE为 0.577,R2 为 0.981)有显著提升,验证了PSO算法优化SVR参数的有效性.对原始数据进行预处理,并基于优化后的数据训练PSO-SVR模型,结果显示:经过数据预处理的PSO-SVR模型在测试集上的RMSE进一步降至 0.255,R2 提高至 0.996,预测精度和泛化能力均得到增强.
Particle Swarm Optimization-based Support Vector Regression for Prediction of Electrical Discharge Machining Process Parameters
In the process of EDM,there is a non-linear relationship between discharge parameters and surface roughness,which complicates the task of determining appropriate electrical parameters for machining.Therefore,a prediction model of EDM process parameters based on a support vector regression optimized by the particle swarm algorithm is proposed.The research results show that the root mean square error(RMSE)of PSO-SVR on the test set is 0.302,and the coefficient of determination(R2)is 0.994,significantly better than the traditional SVR model(RMSE of 0.577,R2 of 0.981),verifying the effectiveness of the PSO algorithm in optimizing SVR parameters.The original data is preprocessed,and the PSO-SVR model is trained based on the optimized data.The results show that the RMSE of the data-preprocessed PSO-SVR model on the test set is further reduced to 0.255,and R2 is improved to 0.996,enhancing the prediction accuracy and generalization ability.

support vector regressionparticle swarm optimizationEDMprocess parameterssurface roughness

寇鹏远、王伟、刘建勇、罗学科、李殿新、张慧杰

展开 >

北京石油化工学院机械工程学院,北京 102617

支持向量回归 粒子群算法 电火花加工 工艺参数 表面粗糙度

国家重点研发计划项目北京市科技新星计划项目北京石油化工学院致远科研基金项目

2023YFB4605902202304844292023003

2024

电加工与模具
苏州电加工机床研究所 中国机械工程学会特种加工分会

电加工与模具

CSTPCD北大核心
影响因子:0.285
ISSN:1009-279X
年,卷(期):2024.(5)
  • 10