首页|基于图卷积网络的电力变压器故障诊断

基于图卷积网络的电力变压器故障诊断

扫码查看
为了提高电力变压器故障诊断的准确性,提出了一种基于图卷积网络(Graph Convolutional Net-work,GCN)的电力变压器故障诊断方法.该方法利用GCN的邻接矩阵充分表示未知样本与标记样本之间的相似度度量,以图卷积层作为分类器,寻找溶解气体与故障类型之间的复杂非线性关系,使用反向传播算法完成GCN的训练过程.对比分析结果表明,在不同的输入特征下,GCN的性能优于其他现有模型,显著提高了故障诊断的准确性.
Power Transformer Fault Diagnosis Based on the Graph Convolutional Networks
To improve the accuracy of power trans-former fault diagnosis,a method based on the GCN is pro-posed.This method utilizes the adjacency matrix of GCN to fully represent the similarity measure between unknown and labeled samples,using graph convolutional layers as classifiers to find complex nonlinear relationships between dissolved gases and fault types,employing back propaga-tion algorithms to complete the training process of GCN.Comparative analysis results show that GCN outperforms other existing models under different input features,signifi-cantly enhancing the accuracy of the fault diagnosis.

fault diagnosisGCNpower transformer

韩小晶

展开 >

国电投零碳能源(徐州)有限公司(221161)

故障诊断 GCN 电力变压器

2024

电机技术
上海电气(集团)总公司

电机技术

影响因子:0.146
ISSN:1006-2807
年,卷(期):2024.(6)