首页|基于NOA-VMD的炮口冲击波谐振噪声降噪算法

基于NOA-VMD的炮口冲击波谐振噪声降噪算法

扫码查看
火炮发射时产生的炮口冲击波信号频谱范围广,受限于采集系统中压力传感器有效工作带宽导致采集过程引入大量谐振噪声.为了降低谐振噪声对炮口冲击波信号的影响,提出了一种基于星鸦优化算法(NOA)优化变分模态分解(VMD)的炮口冲击波谐振噪声降噪算法.首先以最小包络熵为适应度函数的NOA对VMD的分解模态数与惩罚因子参数进行优化;其次通过NOA-VMD算法对炮口冲击波信号进行分解,计算各分量谐振能量损失比筛选出谐振分量;最后对剩余信号分量进行重构得到去除谐振分量的炮口冲击波.实验结果表明,NOA寻优效果最佳,基于NOA-VMD算法有效降低谐振噪声对炮口冲击波信号的干扰.
The Resonant Noise Reduction Method of Muzzle Shock Wave Based on NOA-VMD
The muzzle shock wave signal generated when a gun is fired possesses a wide spectrum. Limited by the effective working bandwidth of the pressure sensor in the acquisition system,a lot of resonant noise is introduced in the acquisition process. To overcome the influence of resonant noise on muzzle shock wave and ensure the integrity and accuracy of muzzle shock wave characteristics,an algorithm of muzzle shock wave resonant noise reduction based on Nutcracker Optimization Algo-rithm ( NOA) optimized Variational Mode Decomposition ( VMD) is proposed. Firstly,use the minimum envelope entropy as the fitness function of the NOA algorithm to optimize the number of decomposition modes and the penalty factor parameters of VMD. Then,decompose the muzzle shock wave signal by the NOA-VMD algorithm,and calculate each component's resonant energy loss ratio to select the resonant components. Finally,reconstruct the residual signal component to obtain the muzzle shock wave with the resonant component removed. The shock tube experiment is used to verify the NOA-VMD algorithm. The experimental results show that the NOA-VMD algorithm can effectively reduce the resonant noise interference of the muzzle shock wave. The comparative experiment has verified the optimization effect of the NOA algorithm.

muzzle shock waveresonant noisenutcracker optimization algorithmvariational mode decompositionenergy loss ratio

杨浩越、孟祥瑞、鞠明池、王英志

展开 >

长春理工大学电子信息工程学院,吉林 长春 130022

炮口冲击波 谐振噪声 星鸦优化算法 变分模态分解 谐振能量损失比

吉林省科技厅创新中心基金项目

YDZJ202302CXJD043

2024

弹箭与制导学报
中国兵工学会 中国兵器工业第203研究所

弹箭与制导学报

CSTPCD北大核心
影响因子:0.311
ISSN:1673-9728
年,卷(期):2024.44(4)
  • 7