首页|基于二次分解和BiGRU的超短期光伏发电功率预测

基于二次分解和BiGRU的超短期光伏发电功率预测

扫码查看
针对超短期光伏发电功率预测,提出一种基于自适应噪声的完备经验模态分解(CEEM-DAN)-变分模态分解(VMD)-双向门控循环单元(BiGRU)的混合预测模型.采用CEEMDAN对光伏发电功率信号进行分解,通过样本熵和K-means方法对分解后信号进行聚类重构;再利用VMD对复杂信号进行二次分解,以削弱信号的非平稳性;将分解后各信号分量作为BiGRU模型的输入进行训练、验证和预测,然后线性叠加各信号分量预测结果,得到最终预测结果.结果表明:混合预测模型的预测精度高于单一模型,验证了混合预测模型的有效性;通过对比典型天气情况下的预测效果及各项评价指标,验证了所提出方法的通用性.
Ultra-short-term Photovoltaic Power Forecasting Based on Secondary Decomposition and BiGRU
For the forecasting of ultra-short-term photovoltaic power,a hybrid prediction model based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),variational mode de-composition(VMD)and bidirectional gated recurrent unit(BiGRU)was developed.The photovoltaic power generation signal was decomposed using CEEMDAN,and the decomposed signals were clustered and reconstructed using sample entropy and the K-means methods.Then,the VMD was applied for the secondary decomposition of complex signals to mitigate signal non-stationarity.The decomposed signal components were employed as inputs for training,validation and prediction in the BiGRU model.Subse-quently,the predicted results from each signal component were linearly combined to obtain the final fore-casting results.Results show that the hybrid model outperforms single models,confirming the effective-ness of the model.By comparing the forecasting performances under typical weather conditions and various evaluation metrics,the generality of the proposed method was validated.

photovoltaicpower forecastingsecondary decompositionsample entropyBiGRU

韩博、李长青、刘卫亮、刘帅、刘长良、徐家豪、王昕

展开 >

华北电力大学控制与计算机工程学院,河北保定 071000

保定市综合能源系统状态检测与优化调控重点实验室,河北保定 071000

国家能源集团新能源技术研究院有限公司,北京 102209

光伏发电 功率预测 二次分解 样本熵 双向门控循环单元

2025

动力工程学报
中国动力工程学会 上海发电设备成套设计研究院

动力工程学报

北大核心
影响因子:0.991
ISSN:1674-7607
年,卷(期):2025.45(1)