首页|风力机齿轮箱无监督故障诊断方法研究

风力机齿轮箱无监督故障诊断方法研究

扫码查看
针对风力机齿轮箱振动信号具有强非线性特征,提出了改进变分模态分解方法对信号进行分解以提取特征分量,并以混沌相图及Lyapunov指数量化信号的非线性变化.采用随机近邻嵌入算法对多模态非线性故障特征集的冗余特征进行降维,以保证故障特征提取的可靠性并提升故障诊断准确率,所提出的无监督故障诊断框架无需人为对故障样本进行标注,更适合工程应用,并将所提方法应用于NREL GRC风力机齿轮箱故障.结果表明:改进变分模态分解方法可准确实现多模态特征提取,结合随机近邻嵌入算法,可有效消除冗余特征保证故障信息的可靠性,且同类样本聚集、异类样本差异增大,聚类表现更清晰,提升了故障分类的准确率.
Research on Unsupervised Fault Diagnosis Method for Wind Turbine Gearbox
Aiming at strong nonlinear characteristics of wind turbine gearbox vibration signals,an improved variational mode decomposition method was proposed to decompose signals for extracting characteristic components,and the nonlinear changes of the signal were quantified by chaotic phase portraits and Lya-punov exponent.To ensure the reliability of fault feature extraction and improve the accuracy of fault diag-nosis,the random nearest neighbor embedding algorithm was used to reduce redundant features of multi-modal nonlinear fault feature sets.The proposed method was applied to NREL GRC wind turbine gearbox faults due to the unsupervised fault diagnosis framework being more suitable for engineering applications without manual marking of fault samples.Results show that the improved variational mode decomposition method can accurately extract multi-modal features.Combined with the random nearest neighbor embed-ding algorithm,redundant features can be effectively eliminated to ensure the reliability of fault informa-tion.Moreover,the clustering of similar samples and the difference of heterogeneous samples increase,and the clustering performance is clearer,which improves the accuracy of fault classification.

gearboxvariational mode decompositionchaotic phase portraitsLyapunov exponentsran-dom nearest neighbor embedding algorithmfault diagnosis

俎海东、焦晓峰、张万福、孙康、李春

展开 >

内蒙古电力科学研究院分公司,内蒙古呼和浩特 010020

上海理工大学能源与动力工程学院,上海 200093

齿轮箱 变分模态分解 混沌相图 Lyapunov指数 随机近邻嵌入算法 故障诊断

2025

动力工程学报
中国动力工程学会 上海发电设备成套设计研究院

动力工程学报

北大核心
影响因子:0.991
ISSN:1674-7607
年,卷(期):2025.45(1)