首页|面向多模态过程的凝汽器故障特征提取研究

面向多模态过程的凝汽器故障特征提取研究

扫码查看
针对凝汽器设备多模态运行过程的在线监测与故障特征提取问题,提出了一种融合k-means聚类与重构主成分分析的故障特征提取方法.首先,采用k-means聚类进行模态识别,聚类结果表明不同模态之间平方预测误差(SPE)统计量存在显著差异,需要对子模态分别建立监测模型.为有效获取故障特征,抑制故障分离过程中的残差污染现象,采用重构主成分分析法获取故障特征向量,实现了面向多模态过程的故障特征提取.结果表明:使用重构贡献图法能够分离检测出故障变量及其特征向量,且能有效避免残差污染问题,具有良好的故障定位精度.
Research on Fault Condenser Feature Extraction for Multi-modal Processes
To address the issue of online monitoring and fault feature extraction in multi-modal operation process of condenser equipment,a fault feature extraction method integrating k-means clustering and re-constructed principal component analysis was proposed.First,k-means clustering was used to identify modes.The clustering results show significant differences in squared prediction error(SPE)statistics a-mong different modes,and it is necessary to establish monitoring models for sub-modes.In order to obtain fault features effectively and suppress residual pollution in fault separation process,fault feature vectors were obtained by reconstructing principal component analysis method,and the fault feature extraction for multi-modal process was realized.Results show that fault variables and their feature vectors can be separa-ted and detected by using the reconstructed contribution graph method,and the residual pollution problem can be avoided effectively,and the fault location accuracy is good.

condensermulti-modal processfault feature extractionreconstruction-based principal com-ponent analysisfault isolation

朱继涛、曾水平、贺宇清、郑佳佳、代雨辰、司风琪

展开 >

国家电投集团江西电力有限公司,江西南昌 330000

国家电投集团江西电力有限公司景德镇发电厂,江西景德镇 333036

东南大学能源与环境学院,江苏南京 210096

凝汽器 多模态过程 故障特征提取 重构主成分分析 故障分离

2025

动力工程学报
中国动力工程学会 上海发电设备成套设计研究院

动力工程学报

北大核心
影响因子:0.991
ISSN:1674-7607
年,卷(期):2025.45(1)