首页|基于机器学习的垃圾焚化炉二噁英排放浓度软测量研究

基于机器学习的垃圾焚化炉二噁英排放浓度软测量研究

扫码查看
垃圾焚烧炉烟气中二噁英的浓度一直是关注的焦点,对二噁英的测量存在成本高、时间长、无法实时监测等问题,因此以焚烧炉的运行参数和可监测的污染物浓度为基础,通过软测量实现二噁英浓度的间接在线监测显得尤为重要。本文使用机器学习算法建立了支持向量机、极端梯度提升(eXtreme Gradient Boosting,XGBoost)、随机森林、神经网络、决策树、线性回归六种不同类型的回归预测模型,通过优化参数、降低模型误差来提高泛化能力,并运用5折交叉验证法和回归模型评估标准对这六种模型进行了全面分析对比。结果表明,对于训练集和测试集均是支持向量机模型的表现最好,其测试集的平均绝对误差(SMAE)、相对误差(SRE)均和决定系数(R2)分别为6。93、3。36和0。98。通过支持向量机模型分析了烟气温度、燃烧室温度、CO浓度、HCl浓度、颗粒物浓度这五个特征变量对二噁英浓度的影响,发现CO浓度对二噁英浓度的影响程度最大,呈正相关;燃烧室温度次之,燃烧室温度在800~900℃时,二噁英浓度最大。本研究为垃圾焚化炉中二噁英排放浓度的软测量提供理论依据。
Research on soft sensing of dioxin emission concentration from garbage incinerators based on machine learning
The concentration of dioxin in the flue gas of waste incinerators has been the focus of attention.Measurement of dioxin has the problems of high cost,long time,and inability to monitor in real time,so it is particularly important to realize the indirect online monitoring of dioxin concentration through soft measurements based on the operating parameters of the incinerator and the concentration of the pollutants that can be monitored.In this paper,six different types of regression prediction models,namely,support vector machine,extreme Gradient Boosting(eXtreme Gradient Boosting(XGBoost),random forest,neural network,decision tree,and linear regression,are established using machine learning algorithms to improve the generalization ability by optimizing the parameters and decreasing the model error,and five folds of the Cross-validation method and regression model evaluation criteria were used to comprehensively analyze and compare these six models.The results showed that the support vector machine model performed the best for both the training and test sets,and the mean absolute error(SMAE),relative error(SRE),and coefficient of determination(R2)for the test set were 6.93,3.36,and 0.98,respectively.Five characteristic variables,namely,the flue gas temperature,the combustion chamber temperature,the CO concentration,the HCl concentration,and the particulate concentration,were analyzed by the support vector machine model for their effects on dioxin concentration.The effects on dioxin concentration were analyzed by support vector machine modeling,and it was found that CO concentration had the greatest degree of influence on dioxin concentration,which was positively correlated;combustion chamber temperature was the next highest,and the dioxin concentration was the greatest when the combustion chamber temperature was in the range of 800~900℃.This study provides a theoretical basis for the soft measurement of dioxin emission concentration in waste incinerators.

waste incineratordioxinsoft sensormachine learningsupport vector machine

张磊、周磊、杨国辉、李长旭、马国伟

展开 >

国家能源集团宁夏电力有限公司,宁夏 银川 750011

国家能源集团科学技术研究院有限公司,江苏 南京 210023

垃圾焚化炉 二噁英 软测量 机器学习 支持向量机

2024

电力科技与环保
国电科学技术研究院

电力科技与环保

影响因子:0.653
ISSN:1674-8069
年,卷(期):2024.40(6)