首页|基于概率稀疏自注意力的船舶短期电力负荷预测

基于概率稀疏自注意力的船舶短期电力负荷预测

扫码查看
针对船舶电力负荷数据预测时存在的实时性差、存储数据量小且质量低等问题,提出一种结合数据插补、小波阈值去噪与概率稀疏自注意力(ProbSparse self-atten-tion)机制的新型短期负荷预测方法.首先,在数据预处理阶段,在不影响原始数据特征及趋势前提下通过插值填补缺失数据,扩充数据库以满足模型训练要求,同时考虑到原始船舶电力负荷数据可能存在噪声干扰等问题,为减小其对模型预测效果的影响,对原信号采用了小波阈值去噪处理的方法来改善数据质量.其次,在预测模型中引入概率稀疏自注意力机制,在有效捕获时序电力数据中的依赖关系和重要特征的同时,降低内存资源占用,减小模型复杂度,满足船舶电力负荷预测实时性要求,实现了预测精度与效率双优化.相较传统Transformer模型、ARIMA和LSTM模型,本文模型在均方根误差和平均绝对百分比误差上平均分别降低了 13.1%、18.6%,效率平均提高24.0%以上,表明本文方法在船舶电力负荷数据预测模型准确度及效率上具有明显优势.
Ships short-term power load prediction based on ProbSparse self-attention
Aiming at the problems of poor real-time perform-ance,small storage data and low quality of ship power load data prediction,a new short-term load prediction method,by combining data interpolation,wavelet threshold denoising and ProbSparse self-attention was proposed.Firstly,in data pre-processing stage,the database was expanded by using interpo-lation to complement the missing data,thereby meet the mod-el training requirements without affecting the characteristics and trends of the original data,at the same time,as consider-ing the noise disturbance in the original ship power load data,in order to reduce its impact on the model prediction effect,a new wavelet threshold denoising method was adopted to process the original signals to improve the quality of the data.Secondly,the ProbSparse self-attention was introduced into the prediction model to effectively capture the dependency re-lationships and important features in time-series power data,reduce memory resource occupation,and model complexity to meet the real-time requirements of ship power load prediction,and achieve dual optimization of prediction accuracy and effi-ciency.Compared with traditional Transformer model,ARIMA and LSTM models,the proposed model reduces root mean square error and average absolute percentage error by an aver-age of 13.1%and 18.6%,respectively,and improves effi-ciency by an average of over 24.0%,which indicates that the proposed method has significant advantages in the accuracy and efficiency of ship power load data prediction models.

ship power loadshort-term predictiondata pre-processingProbSparse self-attention mechanism

王谦、高海波、左文

展开 >

武汉理工大学船海与能源动力工程学院,武汉 430063

武汉海翎光电科技有限公司数据采集部门,武汉 430035

船舶电力负荷 短期预测 数据预处理 概率稀疏自注意力机制

2024

大连海事大学学报
大连海事大学

大连海事大学学报

CSTPCD北大核心
影响因子:0.469
ISSN:1006-7736
年,卷(期):2024.50(1)
  • 19