首页|基于轻量化YOLOv7-tiny的船舶目标检测算法

基于轻量化YOLOv7-tiny的船舶目标检测算法

扫码查看
为解决船舶目标检测算法参数量与计算量大,以及受内河环境下近岸复杂背景影响和船舶相互遮挡导致船舶检测困难的问题,基于YOLOv7-tiny做出改进,提出MED-YOLO船舶目标检测轻量化算法。首先,使用Mo-bileNetV3网络作为主干特征提取网络,极大地降低了模型计算成本;其次,将EMA注意力模块引入颈部网络,构建EMA-ELAN模块,增强网络多维度感知和多尺度特征提取能力;然后,选用将尺度感知、空间感知和任务感知三合一的Dyhead作为改进模型的检测头部,以获得更强的特征表达能力;最后,使用具有动态非单调聚焦机制的WIoU作为模型边界框损失函数,提高模型应对船舶遮挡的能力,提升检测性能。实验结果表明,MED-YOLO相较YOLOv7-tiny在参数量与计算量方面分别减少39。8%和55。0%,精度与mAP@0。5分别提高了 1。4%和1。0%,达到98。3%和98。9%,在实现轻量化的同时具有更好的检测性能,满足了计算资源受限环境下的部署需求,具有一定的工程实际意义。
Ship target detection algorithm based on lightweight YOLOv7-tiny
To solve the problem of the large number of param-eters and computation of ship target detection algorithm,as well as the difficulties of ship detection caused by the influ-ence of the nearshore complex backgrounds and the mutual oc-clusion of ships in inland river environments,a lightweight al-gorithm termed MED-YOLO for ship target detection was pro-posed by virtue of improvements on YOLOv7-tiny.Firstly,the MobileNetV3 network was used as the backbone feature ex-traction network,thereby greatly reducing the calculation cost of the model.Secondly,the EMA attention module was intro-duced into the neck network,thereby contributing to the EMA-ELAN module that enhanced multi-dimensional percep-tion and multi-scale feature extraction capability of the net-work.Then,combining with scale,spatial,and task percep-tions,the Dyhead was selected as the detection head of the improved model to obtain stronger feature expression ability.Finally,the WIoU with dynamic non-monotonic focusing mechanism was used as the bounding-box loss function to cope with ship occlusion and improve the detection performance.The experimental results show that,compared with YOLOv7-tiny,the proposed MED-YOLO has 39.8%fewer parameters and 55.0%less computation,and its precision and mAP@0.5 have increased by 1.4%and 1.0%,respectively,reaching 98.3%and 98.9%,which not only achieves lightweight,but also has better detection performance,which meets the de-ployment requirements in limited computing resources,and thereby offering practical engineering significance.

YOLOv7-tinyobject detectionlightweightat-tention mechanismloss function

丘锐聪、周海峰、陈颖、张兴杰、黄金满、翁卫征

展开 >

集美大学轮机工程学院,福建厦门 361021

集美大学福建省船舶与海洋工程重点实验室,福建厦门 361021

集美大学航海学院,福建厦门 361021

厦门安麦信自动化科技有限公司,福建厦门 361000

厦门三丰鑫科技有限公司,福建厦门 361001

展开 >

YOLOv7-tiny 目标检测 轻量化 注意力机制 损失函数

国家自然科学基金资助项目福建省自然科学基金资助项目集美大学安麦信产学研项目

511790742021J01839S20127

2024

大连海事大学学报
大连海事大学

大连海事大学学报

CSTPCD北大核心
影响因子:0.469
ISSN:1006-7736
年,卷(期):2024.50(2)
  • 23