首页|无人艇光视觉感知的轻量型残差堆叠低照度图像增强网络

无人艇光视觉感知的轻量型残差堆叠低照度图像增强网络

扫码查看
针对无人艇在低照度环境中感知困难问题,提出一种轻量型残差堆叠低照度图像增强网络.首先,在特征融合中引入金字塔多尺度池化,以更好地保留图像细节.其次,引入深度可分离卷积以减轻网络负担,提高图像处理速度.再次,设计一种新的复合损失函数,引入颜色损失以减少颜色失真.最后,采用LeakyReLU激活函数防止神经元死亡.实验结果表明,相比残差堆叠注意力低照度增强网络(SARN),本文方法在提升图像质量的同时加快了图像处理速度,其中,结构相似性和峰值信噪比分别提高了 3.31%和2.08%,模型计算量、参数量和单张处理时间分别减小了 81.88%、75%和 43.02%.
A lightweight stacked residual low-light image enhancement network for USV optical vision perception
A lightweight stacked residual low-light image en-hancement network was proposed to overcome the difficulty in accurately sensing the environment under low-light conditions for unmanned surface vessels(USV).Firstly,a pyramid multi-scale pooling was introduced into feature fusion to better preserve image details.Secondly,depthwise separable convo-lution was introduced to reduce network burden and improve the image processing speed.Thirdly,a new composite loss function with color loss was designed to reduce color distor-tion.Finally,LeakyReLU activation function was used to pre-vent neuronal death.Results show that compared to the low il-lumination image enhancement network of stacked attention residual network(SARN),the proposed method improves im-age quality while accelerating image processing speed.The structural similarity and peak signal-to-noise ratio are im-proved by 3.31%and 2.08%,respectively.The model com-putation,parameter count,and single image processing time are reduced by 81.88%,75%,and 43.02%,respectively.

unmanned surface vehicle(USV)low-light im-age enhancementconvolutional neural networkdepthwise separable convolutionpyramid poolingcolor loss

刘婷、张宇欣、王国峰、罗佩琪、范云生

展开 >

大连海事大学船舶电气工程学院,辽宁大连 116026

无人艇(USV) 低照度图像增强 卷积神经网络 深度可分离卷积 金字塔池化 颜色损失

中国博士后科学基金资助项目

2019M661076

2024

大连海事大学学报
大连海事大学

大连海事大学学报

CSTPCD北大核心
影响因子:0.469
ISSN:1006-7736
年,卷(期):2024.50(2)