首页|基于深度估计和梯度下降的水下图像恢复与增强

基于深度估计和梯度下降的水下图像恢复与增强

扫码查看
由于水下介质散射和吸收等固有特性,水下图像面临图像模糊、低对比度和颜色失真等多重降质问题,严重影响视觉感知性能.针对上述问题,提出基于深度估计和梯度下降策略的水下图像恢复与增强框架(UIRENet).首先,借助卷积、非线性激活函数模块,构建深度感知网络,实现对不同退化区域的场景深度感知,克服场景深度依赖的退化;其次,提出梯度优化策略,优化卷积网络参数,提升深度网络增强性能;最后,结合感知损失、边缘损失和水下色彩恒常损失,形成水下图像增强网络损失函数.通过在UIEB-90、UIEB-M和EUVP数据集上开展综合测试实验,验证了UIRENet框架在降低水下图像模糊度、提升视觉效果方面均显著优于目前典型水下图像增强方法,特别在客观评价指标UIQM上,相比CLAHE、ICM、GC、IBLA、DCP、ULAP、FUnIE-GAN、UGAN和Uformer等方法分别提高0.3700、0.6446、0.5919、1.3081、1.3032、1.1672、0.0593、0.1329和0.0934.
Underwater image restoration and enhancement using depth estimation and gradient descent
Due to inherent scattering and absorption,underwa-ter images inevitably suffer from multiple degradations arising from blurring,low contrast and color distortion,thereby seri-ously deteriorating visual perception. In this paper,a deep learning-based underwater image restoration and enhancement framework (UIRENet) was proposed by virtue of depth esti-mation and gradient descent strategy. With the aid of convolu-tional and nonlinear activation function modules,a deep per-ception network was constructed to achieve scene depth per-ception maps for different degradation regions,thereby overco-ming the dependence of scene-depth degradation. A gradient optimization strategy was further proposed to optimize the pa-rameters of convolutional networks and improve the perform-ance of deep network enhancement. Combined with perceptu-al,edge and underwater color constancy losses,a comprehen-sive loss function for underwater image enhancement networks was rationally formed. Comprehensive experiments on the UIEB-90,UIEB-M and EUVP datasets show that the UI-RENet framework significantly outperforms typical underwater image enhancement methods in terms of reducing underwater image blurriness and improving visual effects. In particular,comparing to CLAHE,ICM,GC,IBLA,DCP,ULAP,FUnIE-GAN,UGAN and Uformer,the objective evaluation metric UIQM can be promoted by 0.3700,0.6446,0.5919,1.3081,1.3032,1.1672,0.0593,0.1329 and 0.0934,re-spectively.

underwater imageimage restorationimage enhancementdepth estimationgradient descent strategyconvolutional neural network

王宁、贾薇、陈延政、魏一、吴浩峻

展开 >

大连海事大学 轮机工程学院,辽宁 大连 116026

水下图像 图像恢复 图像增强 深度估计 梯度下降策略 卷积神经网络

国家自然科学基金资助项目国家自然科学基金资助项目国家高层次人才支持计划项目国防基础科研计划一般项目辽宁省"兴辽英才计划"领军人才项目大连市科技创新基金重大基础研究项目中央高校基本科研业务费专项资金项目

U23A2068052271306SQ2022QB00329JCKY2022410C013XLYC22020052023JJ11CG0093132023501

2024

大连海事大学学报
大连海事大学

大连海事大学学报

CSTPCD北大核心
影响因子:0.469
ISSN:1006-7736
年,卷(期):2024.50(3)