首页|海港航道水域船舶异常行为检测

海港航道水域船舶异常行为检测

扫码查看
鉴于目前VTS、AIS人工分析的效率难以满足日益严峻的水上交通监管形势要求,本文考虑船舶进出港航行特点,提出一种海港航道水域船舶异常行为检测方法。首先,考虑船舶类型、通航规则等影响因素,建立基于语义轨迹多维相似度的船舶轨迹聚类方法,以识别符合通航规则的船舶进出港交通模式;然后,构建语义转换模型,将交通模式轨迹数据转换为模式轨迹文本,并采用文本余弦相似度方法匹配目标船舶的交通模式;接着,利用核密度估计构建船舶异常行为检测模型。以天津港为例,从历史船舶轨迹数据中提取 40 种进出港交通模式,并以此构建船舶异常行为检测方法,通过航海模拟器仿真数据对方法进行验证。结果表明,该方法能够有效检测出船舶的异常行为,可对水上交通监管起到一定的辅助作用。
Abnormal behavior detection of ships in harbor waterways
In view of current efficiency of VTS and AIS manual analysis cannot meet the increasingly severe situation of water traffic supervision,a method for detecting abnormal behaviors of ships in the waters of harbor waterways was proposed by considering the navigation characteristics of ships entering and leaving ports.Firstly,considering influence factors such as ship type and navigation rules,a ship trajectory clustering method based on semantic trajectory multi-dimensional simi-larity was established to identify traffic patterns of ships ente-ring and leaving the port that comply with navigation rules.Secondly,a semantic transformation model was constructed to convert traffic pattern trajectory data into pattern trajectory text,while the text cosine similarity method was used to match the traffic pattern of the target ship.Furthermore,a ship a-nomaly behavior detection model was constructed by using kernel density estimation.Taking Tianjin Port as an example,40 kinds of inbound and outbound traffic patterns were extrac-ted from historical ship trajectory data to construct the ship abnormal behavior detection method,and validated by using simulated data from navigation simulator.Results show that the proposed method can effectively detect ship abnormal be-haviors,providing assistance in waterway supervision.

shipharbor waterway waterstraffic patternsabnormal behavior detectionautomatic identification system(AIS)datatext similaritykernel density estimation

李高才、张新宇、蒋晨星、连晓荣、张辉辉、王佳伟

展开 >

集美大学 航海学院,福建 厦门 361021

大连海事大学 海上智能交通研究团队,辽宁 大连 116026

中国船级社质量认证有限公司深圳分公司,广东 深圳 518052

船舶 海港航道水域 交通模式 异常行为检测 AIS数据 文本相似度 核密度估计

2024

大连海事大学学报
大连海事大学

大连海事大学学报

CSTPCD北大核心
影响因子:0.469
ISSN:1006-7736
年,卷(期):2024.50(4)