首页|基于双分支残差网络的粒子图像增强方法

基于双分支残差网络的粒子图像增强方法

扫码查看
为获取高质量的粒子图像,提出一种双分支残差卷积神经网络DBRNet用于粒子图像测速(PIV)技术中的粒子图像增强.首先,设计一种由残差块组成的双分支卷积神经网络对输入的粒子图像对进行特征提取,同时,采用编码-解码器对粒子图像对的特征信息进行有效融合.其次,自主生成具有挑战性的图像增强数据集训练模型参数,其中,包含不同浓度的高斯噪声、光强噪声及多种真实的干扰背景,以充分模拟真实流体场景.结果表明,本文方法能够有效处理合成图像和真实图像中的噪声干扰,实现图像增强;利用速度场估计算法处理经本文方法增强后的粒子图像对可以得到更高精度的速度场.
Particle image enhancement method based on dual-branch residual network
A dual-branch residual convolutional neural network was proposed for image enhancement in PIV velocity tech-nique to obtain high-quality particle images.Firstly,a dual-branch convolutional neural network composed of residual blocks was designed to extract features from the input particle image pairs,while a coding-decoder was used to effectively fuse the feature information of the particle image pairs.Sec-ondly,a challenging image enhancement dataset was autono-mously generated to train model parameters,including Gaussi-an noises of different concentrations,light intensity noise and various real interference backgrounds,thereby fully simulating real fluid scenes.Results show that the proposed method can effectively deal with noise interference in both synthesized and real images,achieving image enhancement.Meanwhile,high-er precision velocity fields can be obtained by using velocity field estimation algorithm to process the particle image pairs enhanced by the proposed method in this paper.

particle image enhancementparticle image ve-locimetry(PIV)deep learningdual-branch residual net-work

张志浩、于长东、刘百胜、范毅伟

展开 >

大连海事大学 人工智能学院,辽宁 大连 116026

辽宁工程技术大学 软件学院,辽宁 葫芦岛 125000

哈尔滨工程大学 船舶工程学院,哈尔滨 150001

粒子图像增强 粒子图像测速(PIV) 深度学习 双分支残差网络

2024

大连海事大学学报
大连海事大学

大连海事大学学报

CSTPCD北大核心
影响因子:0.469
ISSN:1006-7736
年,卷(期):2024.50(4)